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Partially clustered designs, where clustering occurs in some conditions and not others, are common in
psychology, particularly in prevention and intervention trials. This article reports results from a simu-
lation comparing 5 approaches to analyzing partially clustered data, including Type I errors, parameter
bias, efficiency, and power. Results indicate that multilevel models adapted for partially clustered data
are relatively unbiased and efficient and consistently maintain the nominal Type I error rate when using
appropriate degrees of freedom. To attain sufficient power in partially clustered designs, researchers
should attend primarily to the number of clusters in the study. An illustration using data from a partially
clustered eating disorder prevention trial is provided.
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Clustered designs are common in psychological research. A
design can be considered clustered whenever there is nesting of
one set of units within another, such as psychotherapy patients
nested within therapy groups or students nested within classrooms.
Clustered designs are often described as hierarchical and include at
least two levels: (a) the cluster level and (b) the individual level,
where individuals are nested within clusters. Ignoring the hierar-
chical nature of clustered designs can create critical problems for
inferences about the effects of predictors. In this article, we discuss
a specific type of clustered design, namely designs that are par-
tially clustered (Bauer, Sterba, & Hallfors, 2008).

It is important to differentiate between fully and partially clus-
tered designs. In a fully clustered design, clustering occurs in all
study conditions. Examples include school-based research in
which each student is clustered within a school, or studies com-
paring group-administered interventions. In contrast, in partially
clustered designs some study conditions involve clustering and
others do not. For instance, a study might compare married indi-
viduals (clustered within dyads) with single individuals (unclus-
tered) or compare individuals working on a task with others
(clustered within teams) with individuals working on a task alone
(unclustered). Partially clustered designs are also common in in-
tervention research. One example is the comparison of individual

therapy with bibliotherapy. In the individual therapy condition,
patients are clustered within therapists. In the bibliotherapy con-
dition, patients are unclustered because they do not interact with a
therapist. Another example is a trial comparing a group-adminis-
tered treatment (participants clustered within groups) with no
treatment (participants unclustered).

Partially clustered designs characteristically give rise to two sets
of participants—those who are clustered within groups and those
who are not. In some cases, fully clustered designs can produce
superficially similar data wherein some individuals are the sole
members of their clusters. For example, if a researcher sampled
families and then collected data on all siblings, there would be
some families with only one child. Conceptually, however, only
children can still be regarded as clustered within the family. That
is, the observations made on only children will still contain unique
variance associated with the family as well as unique variance
associated with the child, even if one cannot statistically separate
these two variance components on the basis of the observations of
only children alone. The variance structure for all observations is
parallel. In contrast, in partially clustered designs the variance
structure is not parallel because the cluster effect only affects the
clustered condition(s). It is not theoretically sensible to estimate
cluster-level variance for unclustered participants.

Clustered data of any kind complicate statistical analyses. In
particular, it is critical to account for clustering to maintain the
nominal Type I error rate (� � .05) for the fixed effects (e.g., the
intervention effect). If the observations within clusters are incor-
rectly assumed to be uncorrelated (i.e., independent), the proba-
bility of a Type I error usually increases, which is especially true
for between-cluster effects (Crits-Christoph & Mintz, 1991; Kenny
& Judd, 1986; Kenny, Kashy, & Bolger, 1998; Murray, 1998;
Wampold & Serlin, 2000). In partially clustered designs, it is often
reasonable to assume that observations in the unclustered condi-
tion are independent. However, in the clustered condition, obser-
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vations will often be correlated, meaning that individuals within a
cluster are more similar to one another than are individuals from
different clusters.

For example, consider a study in which therapy groups are the
cluster. Because group members interact with one another through-
out the course of the intervention, group members’ observations
can be correlated (Baldwin, Stice, & Rohde, 2008; Herzog et al.,
2002; Imel, Baldwin, Bonus, & Macoon, 2008). These within-
cluster correlations could arise from a number of sources within
the group, including degree of cohesion, attendance patterns, at-
trition, the presence of a domineering group member, skill of the
group leader, and degree of engagement in the treatment. Within-
cluster correlations are not limited to group-administered interven-
tions but can also occur when participants interact with the same
therapist (Crits-Christoph et al., 1991; Wampold & Serlin, 2000)
or in school-based interventions, in which students are clustered
within schools, classrooms, or teachers (Nye, Konstantopoulos, &
Hedges, 2004). Within-cluster correlations may, in addition to
being important for Type I error rates, be substantively interesting
because they may reflect group, therapist, or teacher effects (see
e.g., Imel et al., 2008; Nye et al., 2004; Wampold & Brown, 2005).

Few studies that have used partially clustered designs have
accounted for the clustering in their statistical analysis. Although
methods for accounting for clustering in fully clustered designs in
intervention trials have been discussed extensively (see e.g., Bald-
win, Murray, & Shadish, 2005; Baldwin et al., 2008; Crits-Chris-
toph & Mintz, 1991; Martindale, 1978; Murray, 1998; Wampold &
Serlin, 2000), partially clustered designs have received much less
methodological attention. Consequently, researchers have not had
adequate options for analyzing their partially clustered data. Five
articles have documented methods for estimating intervention ef-
fects in partially clustered designs (Bauer et al., 2008; Hoover,
2002; Lee & Thompson, 2005; Myers, DiCecco, & Lorch, 1981;
Roberts & Roberts, 2005). Myers et al. (1981) discussed a quasi-F
test for accommodating partially clustered data, and Hoover (2002)
discussed an adjustment to an independent samples t test. The
other, more recent methodological work has focused on multilevel
(or mixed) models that provide researchers with a flexible ap-
proach for estimating intervention effects. Like this prior research,
our study focuses especially on the estimation of intervention
effects in partially clustered designs, although the issues we de-
scribe are equally relevant to other effects in partially clustered
designs.

The existing methodological work on analysis of partially clus-
tered designs has five limitations. First, previous work has not
thoroughly evaluated the performance of the various analysis
approaches to partially clustered designs. Roberts and Roberts
(2005) reported a small simulation study that suggests that multi-
level models may perform well, but their simulation was limited
with respect to number of clusters, cluster size, and total sample
size. Second, previous work has not evaluated different methods
for computing degrees of freedom for the test of the intervention
effect. Bauer et al. (2008) recommended using Kenward and
Roger’s (1997) adjustment for degrees of freedom (henceforth the
Kenward–Roger method) but acknowledged that the importance of
this adjustment for partially clustered designs was unknown. Ad-
ditionally, comparing methods for calculating degrees of freedom
is important because some software programs only use one method
for calculating degrees of freedom (e.g., HLM, SPSS) or use a z

distribution (e.g., Stata, Mplus), and without evidence regarding
the performance of the degrees of freedom methods, researchers
are likely to use the default degrees of freedom reported by their
software of choice. Third, previous work has not evaluated ana-
lytic approaches that ignore clustering or that treat cluster as a
fixed effect. Fourth, previous research has not evaluated whether
the various analytic approaches are unbiased and efficient with
respect to the intervention effect and variance components. Fifth,
the discussion of power in partially clustered designs either has
been limited to large sample formulae and has not addressed
degrees of freedom (Moerbeek & Wong, 2008) or has only briefly
mentioned power in small samples but has not provided data
regarding power (Roberts & Roberts, 2005). Consequently, power
for analyses that use appropriate degrees of freedom in finite
samples has not been fully evaluated.

In this article, we address each of the limitations of previous
research directly. First, we evaluate the performance of multilevel
models with respect to Type I error rates under a variety of realistic
design situations—varying the number of clusters, cluster size,
magnitude of within-cluster correlation, and degree of heterosce-
dasticity. Second, we compare the performance of three methods
for computing degrees of freedom for treatment effects in multi-
level models—the “between and within” method, the Satterthwaite
(1946) method, and the Kenward–Roger method. Third, we eval-
uate analytic approaches to partially clustered data that ignore
clustering and that treat cluster as a fixed effect. Fourth, we
evaluate the bias and efficiency of the analytic approaches with
respect to the intervention effect and variance components. Fifth,
we present data on power for tests of intervention effects in
partially clustered designs that incorporate degrees of freedom for
reasonable sample sizes. Finally, although not a limitation of
previous work per se, the use of multilevel models for partially
clustered data are rare outside the methodological literature. Con-
sequently, to increase the likelihood that researchers adopt these
methods, we synthesize the existing methodological work on par-
tially clustered designs and provide a substantive example using an
existing data set including annotated SAS syntax for estimating
intervention effects (see the online supplemental material).

Approaches to Modeling Partially Clustered Data

Before presenting the simulation results, we introduce four
models for analyzing partially clustered data: our preferred ap-
proach as well as three other approaches that are, in our view, less
optimal. In particular, we consider the assumptions each model
makes regarding the variance structure of the data. Specifying the
variance structure correctly is critical for making inferences about
cluster effects and for obtaining efficient and unbiased standard
errors for the fixed effects (e.g., tests of intervention effects).

For instance, consider the case in which one wishes to compare
a group-administered treatment with an unclustered control con-
dition. The participant is represented by i and the cluster by j.
Considering first just the unclustered participants, one might posit
the following model:

Yi �Unclustered � �0 � e0i, (1)

where �0 is the mean value of Y for the control condition and e0i
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captures residual variation around the mean—and E(e0i) � 0. Next,
the scores of the clustered participants might be represented as

Yij �Clustered � �1 � uj � e1ij, (2)

where �1 is mean value of Y for the treatment condition, uj

captures cluster-level variation about the mean, and e1ij captures
individual-level variation about the mean—and E�uj� � 0 and
E�e1ij� � 0. The intervention effect is �1 � �0.

Note that, due to the nonparallel nesting structure, there is one
source of variation in Equation 1, person-to-person differences,
whereas there are two sources of variation in Equation 2, cluster-
to-cluster differences as well as person-to-person differences. The
condition-specific variances are therefore

V�Yi �Unclustered� � �e0

2 (3)

and

V�Yij �Clustered� � �u
2 � �e1

2 , (4)

where �e0

2 is the person-to-person variance in the unclustered
condition, �e1

2 is the person-to-person variance in the clustered
condition, and �u

2 is the cluster-to-cluster variance. Dependence
between observations exists only in the clustered condition, where
the intraclass correlation (ICC; �) is implied to be

� �
�u

2

�u
2 � �e1

2 (5)

and can range from zero to one. The � within the unclustered
condition is zero.

We now consider how well each modeling approach captures
these characteristics of partially clustered data.

Ignoring Clustering

The most common approach to analyzing partially clustered
data is to ignore the clusters and assume that all individuals are
independent (Bauer et al., 2008). These models can take many
forms—for example, analysis of covariance, repeated-measures
analysis of variance (ANOVA), growth curve models, or survival
models. For the simple example given previously, one such model
might be

Yi � 	0 � 	1Xi � ei, (6)

where the intervention is represented by a dummy variable, Xi (1
for the intervention condition and 0 for the comparison). The
parameter 	0 then represents �0, and the parameter 	1 represents
the intervention effect, �1 � �0.

Note that this model, like others that ignore clustering, does not
separate cluster-to-cluster variability from person-to-person vari-
ability. That is, the variance structure is implied to be

V�Yi �Clustered� � �e
2

and

V�Yi �Unclustered� � �e
2,

which is inconsistent with Equations 3 and 4. Although it may
sometimes be true that the variance within the treatment and
control conditions is equal, here the variance in the treatment
condition is pooled into a single term reflecting only person-to-
person variation. By implication, � is incorrectly assumed to be
zero in both conditions. Consequently, standard errors for the fixed
effects will be incorrect, usually elevating the Type I error rate for
the test of the intervention effect. Moreover, because only person-
to-person variance is specified, these models provide no insight
into conceptually interesting clustering effects (e.g., the effects of
groups, therapists, or classrooms).

Including Cluster as a Fixed Effect

A second approach to modeling partially clustered data is to
include cluster as a fixed effect. Suppose that for our simple
example the treated participants were divided among four clusters
(e.g., group or therapist). Dependence due to cluster membership is
accounted for by regressing the dependent variable on dummy
variables representing each cluster and a dummy variable for the
control condition. A fixed-effects model for this design is

Yi � 	0Controli � 	1Cluster 1i � 	2Cluster 2i � 	3Cluster 3i

� 	4Cluster 4i � ei, (7)

where Clusters 1–4 are dummy variables representing membership
in treatment Clusters 1–4. The overall model intercept is not
estimated so that we can estimate a coefficient for the control
group and each cluster. The coefficients for Clusters 1–4 corre-
spond to cluster-specific means. The intervention effect can there-
fore be evaluated by performing a contrast of the combined mean
of the treatment clusters with the mean for the control group. In our
example, if an equal number of participants were in each treatment
group, the contrast coefficients would be –1 for Control and .25 for
Clusters 1–4. The significance test for the contrast provides a test
of the intervention effect.

With this model, the between-cluster variance in Equation 4 is
accounted for through differences between the cluster means, or
the coefficients 	1 through 	4, leaving only person-to-person vari-
ability. This can be seen in the variance equations for the following
two conditions:

V�Yi �Unclustered� � �e
2

and

V�Yi �Clustered� � �
j�1

J

pj�	j � 	� �2 � �e
2,

where J is the total number of groups in the clustered condition
(for our example, J � 4), pj is the proportion of participants from
the clustered condition within group j, and 	� is the grand mean of
the groups, computed as

	� � �
j�1

J

pj	j.
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In effect, the term 	j � 	� represents uj from Equation 2, and
�j�1

J pj�	j � 	� �2 represents �u
2 from Equation 4.

This approach mimics the correct variance structure for the
two conditions when �e0

2 � �e1

2 in Equations 3 and 4. Neverthe-
less, there are several disadvantages to absorbing cluster dif-
ferences through fixed effects. First, cluster-to-cluster differ-
ences contribute to explained variance in the model, whereas
the source of these differences is actually unknown. The Type
I error rate for the test of the intervention effect is therefore
only accurate when inferences are restricted to the specific
clusters in the study (e.g., treatment Groups 1– 4; Serlin,
Wampold, & Levin, 2003; Siemer & Joorman, 2003a, 2003b).
In contrast, one generally seeks to make inferences to the
broader population of clusters (e.g., all possible treatment
groups, not simply those in the study). For such inferences, the
mean square error (MSE) of the model, �̂e

2, fails to fully repre-
sent the unexplained variance, because cluster-to-cluster vari-
ance has been excluded. As with ignoring clustering, the con-
sequence is that the test of the intervention effect will have a
higher than desired Type I error rate.

Model Data as if Fully Clustered

A third approach to modeling partially clustered data is to
conduct the analysis as if the design were fully clustered. Each
participant in the unclustered condition is assigned a unique
cluster ID (value for j) and is considered to be the sole member
of the cluster (i.e., a singleton). For instance, for our simple
example, the Level 1 (i.e., individual level) equation for the
model would be

Yij � 	0j � 	1jXij � eij, (8)

where Yij is the posttest value of the outcome for person i in cluster
j, and “clusters” now include singletons from the control condition.
Likewise, the coefficients 	0j and 	1j represent the intercept and
intervention effect for cluster j. The following Level 2 (i.e., clus-
ter-level) equations specify how these coefficients vary across
clusters:

	0j � 
00 � u0j (9)

and

	1j � 
10. (10)

Note that the intercept varies across clusters through the inclu-
sion of the term u0j, permitting cluster-to-cluster variability in
the outcome variable. The slope for the intervention effect is
assumed to be constant. Finally, a combined model can be
obtained by substituting Equations 9 and 10 into Equation 8 as
follows:

Yij � 
00 � 
10Xij � u0j � eij. (11)

Conventionally, it is assumed that the individual- and cluster-level
residuals are independent and normally distributed, as seen in

eij � N�0, �e
2� (12)

and

u0j � N�0, �u0

2 �. (13)

With this model, 
00 represents �0, 
00 � 
10 represents �1, and

10 is the intervention effect, �1 � �0. The variance structure is

V�Yij �Unclustered� � �u0

2 � �e
2 (14)

and

V�Yij �Clustered� � �u0

2 � �e
2. (15)

Note that the variance of the outcome is equivalently decomposed
into between- and within-cluster variance in both conditions. That
is, the fully clustered model assumes that the variance in both
conditions is due to differences between clusters and differences
between individuals within clusters. This assumption is untenable
in the unclustered condition because there cannot be variability
due to clusters. The exclusively person-to-person variance that
exists within the unclustered condition is thus artificially parti-
tioned to conform to the between- and within-cluster components
that exist within the clustered condition.

For both conditions, � is implied to be

�u0

2

�u0

2 � �e
2. (16)

A nonzero � for the unclustered condition is not theoretically
plausible. Because each control “cluster” is a singleton, however,
the nonzero � for unclustered participants is immaterial for esti-
mation. Therefore, under the special circumstance that the variance
within the two conditions is equal (as implied by Equations 14 and
15), the fully nested model will produce accurate standard errors
for fixed effects (e.g., intervention effect) and accurate estimates of
the two variance components in Equation 4. It does not produce a
direct estimate of the single variance in Equation 3, but this can be
inferred by summing the two variance components. If, however,
the variance is not equal across conditions, then this model will not
produce accurate standard errors for testing the fixed effects, as can
be seen in our simulation results.

Although it is conventional to do so, one need not assume that
the Level 1 residual variance is constant across conditions in fully
clustered models. If the model is modified to allow for heterosce-
dasticity across conditions, the following variance structure re-
sults:

V�Yij �Unclustered� � �u0

2 � �e0

2 (17)

and

V�Yij �Clustered� � �u0

2 � �e1

2 . (18)

Although this modified model retains the nonsensical decomposi-
tion of between- and within-cluster variance for the unclustered
condition, it now conforms completely to the underlying variance
structure of the data. The two variance components in Equation 18
equal the corresponding quantities in Equation 4. For the unclus-
tered condition, however, interpretation of the variance compo-
nents is not straightforward—the term �e0

2 does not represent the
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same quantity in Equation 17 as in Equation 3. In Equation 3, �e0

2

is the total variance within the unclustered condition. In contrast,
in Equation 17, �e0

2 is what remains after subtracting �u0

2 from the
total variance within this condition. In some cases, this artificial
decomposition of variance in Equation 17 can be problematic. For
instance, if the between-cluster variance �u0

2 is large, then for
Equation 17 to hold, the implied value of �e0

2 may approach zero or
even be negative, resulting in computational problems or inadmis-
sible estimates.

Adapt the Multilevel Model to Partially
Clustered Data

A fourth approach is to adapt the multilevel model to match the
nonparallel data structure of partially clustered data (Bauer et al.,
2008; Lee & Thompson, 2005; Roberts & Roberts, 2005). Each
individual within the clustered condition is again considered to be
the single member of his or her own cluster. The following Level
1 (i.e., individual-level) equation for the adapted model is similar
to the fully clustered model:

Yij � 	0j � 	1jXij � eij. (19)

However, the following Level 2 equations are altered to match the
structure of the partially clustered data:

	0j � 
00 (20)

and

	1j � 
10 � u1j. (21)

Here 
00 and 
10 are interpreted in the same way as in the fully
clustered model. The term u1j allows for between-cluster variabil-
ity in outcome levels solely within the intervention condition. Note
that we did not include the cluster-level residual u0j for 	0j because
the control condition consists of only unclustered individuals,
which makes it impossible (and nonsensical) to separate cluster-
and individual-level variability. Because the parameterization of
this model reflects the partial clustering of the data, we refer to this
as the partially clustered model.

A combined model can be obtained by substituting Equations 20
and 21 into Equation 19 as follows:

Yij � 
00 � 
10Xij � u1jXij � eij. (22)

The partially clustered model assumes that the individual- and
cluster-level residuals are independent and normally distributed as

eij � N�0, �e
2� (23)

and

u1j � N�0, �u1

2 �, (24)

where �e
2 and �u1

2 are the variances of the individual- and cluster-
level variances, respectively. The implied variance structure of the
model is thus

V�Yij �Unclustered� � �e
2 (25)

and

V�Yij �Clustered� � �u1

2 � �e
2, (26)

which matches the variance structure in Equations 3 and 4 as long
as the person-to-person variation is equal in magnitude across
conditions. Alternatively, a heteroscedastic version of this model
can be specified where

V�Yij �Unclustered� � �e0

2 (27)

and

V�Yij �Clustered� � �u1

2 � �e1

2 , (28)

permitting differences in person-to-person variability across con-
ditions and conforming exactly to Equations 3 and 4. The � for the
clustered condition implied by either Equation 26 or Equation 28
will equal the � in Equation 5, and � for the unclustered condition
is appropriately implied to be zero by either Equation 25 or
Equation 27.

It is worth noting that the heteroscedastic partially clustered
model and the heteroscedastic fully clustered model are likeli-
hood equivalent. In both cases, three unique variance compo-
nents are estimated, the total variance is permitted to differ
across conditions, and the variance in the clustered condition is
appropriately partitioned into between- and within-cluster com-
ponents. The fully clustered model inappropriately partitions
the variance in the unclustered condition, but this is of little
consequence because the implied nonzero � does not come into
play in estimation (because all “clusters” are singletons in this
condition). The two models can therefore be considered alter-
native paramaterizations (though this is not the case for the
homoscedastic versions of these models). We favor the partially
clustered model, however, because all of the parameters are
directly interpretable, the decomposition of variance is sensible
for both clustered and unclustered conditions, and the partially
clustered model is not vulnerable to estimation problems if the
between-cluster variance is large.

In sum, the partially clustered model fully matches the struc-
ture of the data. It allows researchers to explore how both
individuals and clusters are related to outcomes, it provides
interpretable estimates of variance components, and it should
produce accurate standard errors for fixed effect estimates.
Little research has yet been done, however, to verify that
partially clustered models maintain the nominal Type I error
rate under circumstances likely to be encountered in interven-
tion studies. Nor has the performance of the partially clustered
model been compared with the three other analytic approaches
described previously with respect to Type I errors or parameter
bias and efficiency. We use simulation methods to speak to
these issues, but first we discuss methods for determining
degrees of freedom for tests of fixed effects in partially clus-
tered designs.

Degrees of Freedom

In multilevel models, test statistics for fixed effects estimates are
only normally distributed in large samples; for small-sample in-
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ference, an approximation using the t distribution is preferable.
Unfortunately, the degrees of freedom for the t distribution are not
clear, as is the case with partially clustered designs (Bauer et al.,
2008). We evaluated the following three methods for computing
degrees of freedom in multilevel models: (a) the between–within
method, (b) the Satterthwaite approximation, and (c) the Ken-
ward–Roger method.1

The between-within method is based on a loose analogy to
repeated-measures ANOVA and separates the degrees of freedom
into two parts—between-clusters degrees of freedom and within-
clusters degrees of freedom. Effects of predictors that vary only
between clusters, such as an intervention effect, are assigned
between-clusters degrees of freedom. Predictors that vary within
clusters, such as individual-level covariates, are assigned the with-
in-clusters degrees of freedom. This method for computing degrees
of freedom was used by Singer (1998) in her influential article on
fitting multilevel models using the MIXED procedure in SAS. The
between–within method is, however, likely to provide a poor
approximation for models fit to partially clustered data because it
is not sensitive to the complexities of the data inherent in partially
clustered designs. For example, the between–within method is not
sensitive to the fact that partially clustered data have a complex
variance structure. In contrast, both the Satterthwaite and Ken-
ward–Roger methods can be expected to perform better, because
the optimal degrees of freedom for the t distribution for both
methods explicitly take into account the variance structure of the
data. In each case, a method of moments approach is taken to
arrive at the degrees of freedom that produce the best approxima-
tion to the test distribution, on the basis of information available
from the sample. The Kenward–Roger method first inflates the
variance–covariance matrix of the fixed and random effects to
correct for small sample bias and uncertainty. Satterthwaite de-
grees of freedom are available in SAS and are the only degrees of
freedom currently provided by the SPSS MIXED procedure. Ken-
ward–Roger degrees of freedom are available in SAS.

Performance of Models for Partially Clustered Designs

We used Monte Carlo simulations to evaluate the previously
described models. Monte Carlo simulations can be contrasted with
typical data analyses (Morgan-Lopez & Fals-Stewart, 2008). In
typical data analyses, parameters (i.e., treatment effects) are esti-
mated using data collected from participants. However, the true
value of any parameter is unknown, and one never knows exactly
how close the sample estimate is to the actual population value. In
contrast, in Monte Carlo studies, parameters are estimated using
many simulated data sets where the true value of the population
parameter is known. Thus, one can determine whether sample
results are close to the population value. Common uses of Monte
Carlo simulations include investigating bias in parameter estimates
(whether the models consistently under- or overestimate the pop-
ulation parameter), determining whether models maintain the de-
sired Type I error rate, and determining statistical power.

Simulation Design

Data were generated to simulate a partially clustered interven-
tion study including both a clustered (Xij � 1) and an unclustered

(Xij � 0) condition (cf. Roberts & Roberts, 2005). The intervention
effect was set to zero, and the total variance in the outcome within
the clustered condition was set to one. Data in the clustered
condition were thus generated according to the following model:

Yij � �Xij � 1� � u1j � eij, (29)

where

u1j � ��zj; zj � N�0, 1� (30)

and

eij � ��1 � ��zij; zij � N�0, 1�. (31)

The data in the unclustered condition were generated according to
the following model:

Yij � �Xij � 0� � eij, (32)

where

eij � ���1 � ��zij; zij � N�0, 1�

and � is the ratio of the residual variance in the unclustered
condition to the clustered condition, as seen in

� �
�e0

2

�e1

2 . (33)

When � � 1, there is a common residual variance across condi-
tions, �e

2.
We chose values for the simulation parameters that reflect

partially clustered studies reported in the literature. We set the
number of clusters (c) equal to 2, 4, 8, or 16. Cluster size (m) was
set to 5, 15, or 30. We focused on relatively small cluster sizes
because those will be most common in partially clustered designs.
Cluster size in fully clustered designs reported in the literature vary
from small (two or three) to large (300�). In contrast, most
partially clustered studies that we have been able to locate typi-
cally used relatively small clusters (30 or less). We suspect that
this occurs because when large clusters are used in a study, the unit
of assignment to condition is typically clusters (e.g., assigning
communities to intervention vs. control). It would be unusual to
assign several communities to an intervention and compare those
communities with an unclustered group of individuals. In contrast,
when clusters are small, the unit of assignment is sometimes

1 Faes et al. (2009) described a fourth method that was based on what
they term the effective sample size, which they defined as “the sample size
one would need in an independent sample to equal the amount of infor-
mation in the actual correlated sample” (p. 389). The Satterthwaite and
Kenward–Roger degrees of freedom perform as well as this new method-
ology for Gaussian outcomes (Faes et al., 2009), which we focus on in this
article. Consequently, we did not include this method in our simulations.

Additionally, as noted previously, some software packages assume in-
finite degrees of freedom and use a z test instead of a t test. Although we
do not include this approach in our simulations, we expect it to perform
worse than any of the other methods we describe because assuming infinite
degrees of freedom makes no adjustment for the finite, and often small,
number of clusters included in the analysis.
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clusters and sometimes individuals. When the unit of assignment is
individuals, clustering is usually introduced by the intervention
(e.g., participants are placed in therapy groups). When clustering is
introduced by the intervention, it is often logical to use a compar-
ison condition that does not involving clustering. The sample size
in the unclustered condition (n) was equal to c 
 m.

We set � to be 0, .05, .1, .15, or .30, which represents the range
of �s observed in the intervention literature (cf. Baldwin et al.,
2008; Bauer et al., 2008; Crits-Christoph et al., 1991; Herzog et al.,
2002; Imel et al., 2008; Kim, Wampold, & Bolt, 2006; Lutz, Leon,
Martinovich, Lyons, & Stiles, 2007; Wampold & Brown, 2005).
Including a � � 0 condition allowed us to examine the perfor-
mance of the models when the data are actually independent in the
clustered condition (i.e., clustering is superfluous). Because rela-
tively few �s have been reported, it is difficult to say where in the
range of 0 to .30 most �s will fall, though we suspect that most will
fall at or below .15.

Finally, it is noteworthy that the clustered and unclustered
conditions have unequal variances because the clustered condition
includes the between-cluster variance. There may be additional
heteroscedasticity because the residual variances differ across con-
ditions (e.g., interventions may decrease or increase within-cluster
variability). To explore the impact of heteroscedasticity of the
residual variances, we set the ratio of the residual variance in the
unclustered condition to that of the clustered condition (�) equal to
0.5, 1, or 2. The total difference between the condition-specific
variances is largest when � � 0.5 and smallest when � � 2.
Thus, models that assume equal variances across conditions should
perform worst when � � 0.5. Almost no information regarding
the ratio of residual variances in clustered and unclustered condi-
tions has been reported. However, we believe that most studies
will fall within our range of � values.

For each combination of c, m, �, and �, we generated and
analyzed 10,000 samples of data. We chose 10,000 replications
to minimize the standard error of our simulation estimates (e.g.,
the Type I error rate). After generating the data, we estimated
treatment effects with these five models: (a) an ANOVA that
ignored clusters, (b) the fixed effects approach described ear-
lier, (c) the homoscedastic fully clustered model, (d) the ho-
moscedastic partially clustered model, and (e) the heterosce-

dastic partially clustered model. We estimated but do not report
detailed results for the heteroscedastic fully clustered model
because it is likelihood-equivalent to the heteroscedastic par-
tially clustered model and thus the results are generally redun-
dant. The only difference in the results for the heteroscedastic
fully clustered model was its poor convergence rate (problems
in up to 20.3% of replications).

Additionally, for the multilevel models, we used these three
methods for calculating degrees of freedom: (a) the between–
within method, (b) the Satterthwaite method, and (c) the Ken-
ward–Roger method. The Satterthwaite and Kenward–Roger
results were virtually identical. Consequently, we report only
the Satterthwaite results to conserve space. For each combina-
tion of � and analysis type, we present the Type I error rate,
which is equal to the proportion of significant intervention
effects across the replications, as well as the bias and variability
of the estimates of the treatment effect and of the cluster
variance. Bias was defined as the difference between the aver-
age estimate for a given parameter across the replications and
the population value. Variability in estimates was indexed with
the MSE, which is defined as the average squared deviation
between an estimate of a given parameter and the population
value. To quantify the effect of the variables in the simulation
on Type I error rate, bias, and variability of the estimates, we
estimated an ANOVA model with error rate, bias, or variability
as the outcome and the simulation variables as the factors.
Because effect sizes for the interactions (two-way and above)
were small, we report effect sizes (�2) for main effects only.
Data were generated and models were fit using SAS 9.2. The
multilevel models were estimated with restricted maximum
likelihood estimation.

Type I Errors

ANOVA and fixed effects. Table 1 presents summary in-
formation about Type I errors across the simulation conditions.
Type I error rates were roughly equivalent for the fixed effects
models compared with ANOVA, and neither performed well.
For both the ANOVA and fixed effect models, the magnitude of
� had the largest effect on Type I error rate (�2 � .55),

Table 1
Monte Carlo Type I Error Rates for Partially Clustered Designs

Design

� � .5 � � 1 � � 2

M SD Range M SD Range M SD Range

ANOVA .18 .13 .05 to .50 .15 .11 .05 to .46 .13 .09 .05 to .38
Fixed effects .19 .14 .05 to .53 .17 .12 .05 to .48 .13 .10 .05 to .40
Fully clustered models

Between-within homoscedastic .11 .07 .03 to .36 .08 .04 .03 to .25 .03 .01 .01 to .07
Satterthwaite homoscedastic .11 .07 .04 to .33 .07 .03 .03 to .18 .02 .01 .01 to .06

Partially clustered models
Between-within homoscedastic .07 .04 .03 to .23 .07 .03 .03 to .21 .07 .03 .03 to .19
Satterthwaite homoscedastic .05 .02 .03 to .12 .05 .02 .03 to .12 .06 .01 .04 to .12
Between-within heteroscedastic .07 .04 .03 to .23 .07 .03 .03 to .21 .06 .03 .03 to .18
Satterthwaite heteroscedastic .05 .02 .03 to .12 .05 .02 .03 to .12 .05 .01 .03 to .12

Note. � is the ratio of the unclustered to clustered residual variances. Type I error rates were averaged across all cells within the design of the simulation.
More detailed results are presented in Figures 1–3. ANOVA � analysis of variance.
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followed by m (�2 � .25). When � was 0, both models
maintained the nominal Type I error rate across values of c and
m. However, when � was .05 or greater, Type I error rates were
inflated. The inflation was relatively small when m and � were
small. However, Type I error rates increased as � increased and
as m increased. These variables are important because as both
increase, the variance in clustered condition increases by a
factor of 1 � �m � 1�� (also known as the variance inflation
factor or design effect; Donner, Birkett, & Buck, 1981). In order
to maintain the Type I error rate, this additional variance needs
to be included in the standard error of the intervention effect.
Because the ANOVA model ignores clusters, the additional
variance is not included. Although fixed effects models explic-
itly include a cluster variance, they do not perform well, be-
cause the additional variance in the clustered condition is in-
correctly treated as “explained” variance and removed from the
MSE used to test the intervention effect. Mean differences
between the intervention clusters and control condition that are
due to cluster sampling variability may then appear to be
statistically significant (Zucker, 1990).

Both the ANOVA and fixed effects approaches assumed equal
variance across conditions. Consequently, Type I error rates were
highest when heteroscedasticity was largest (i.e., � � 0.5;
�2 � .03). This occurred in the ANOVA analyses because both

cluster variability and extra residual variability in the clustered
condition are ignored, and some of this additional variability gets
falsely associated with intervention condition, which produces a
Type I error. Error rates were inflated with the fixed effects
analyses because, as before, cluster variance is treated as known
and the extra residual variability is ignored.

Fully clustered model. Figure 1 presents the Type I error
rates for the homoscedastic fully clustered model. Type I error
rates for the fully clustered model ranged from .01 to .36 (see
Table 1) and were affected by all variables in the simulations.
Error rates increased with increases in � (�2 � .21) and in m
(�2 � .08) and decreased with increases in c (�2 � .05). The
Satterthwaite degrees of freedom had smaller error rates than
between–within degrees of freedom (�2 � .01). We discuss this
result in more detail when reporting the results of the partially
clustered models. Additionally, � influenced the Type I error
rate (�2 � .18). As expected, error rates exceeded 5% when � �
0.5 but were below 5% when � � 2.

Partially clustered model. Figures 2 and 3 display the Type
I error rates for the homoscedastic and heteroscedastic partially
clustered models, respectively. Type I error rates for the partially
clustered models ranged from .03 to .23 (see Table 1). Type I error
rates were affected by � (�2 � .26), c (�2 � .14), m (�2 � .12),
and degrees of freedom method (�2 � .08) but not by whether the

Figure 1. Type I error rates (y-axis) for tests of the intervention effect for the homoscedastic fully clustered
model. Error rates are presented for various combinations of cluster size (m), clusters in the clustered condition
(c), intraclass correlation (�), ratio of unclustered residual variance to clustered residual variance (�), and degrees
of freedom method (between–within or Satterthwaite). The dashed line is a reference line representing a Type
I error rate of � � .05.
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model assumed homoscedastic versus heteroscedastic residuals
(�2 � 0) or � (�2 � 0). However, the effects of �, c, and m had
little influence in the Satterthwaite models compared with the
between–within models.

Five conclusions can be drawn from the results of the par-
tially clustered simulations. First, the partially clustered models
provided superior results to the ANOVA (ignoring clustering),
fixed-effects, and fully clustered models. Second, the difference
between homoscedastic and heteroscedastic models was small
and not critical to Type I errors. Third, Type I error rates were
slightly depressed when the population � was 0, which is a
consequence of the nonnegativity constraint on variance com-
ponents (Murray, Hannan, & Baker, 1996). We can relax this
constraint by modeling within-cluster correlations as a covari-
ance instead of variance (cf. Kenny, Mannetti, Pierro, Livi, &
Kashy, 2002). To test whether modeling within-cluster corre-
lation as a covariance brought the Type I error rate up to .05, we
ran a simulation using Satterthwaite degrees of freedom where
c � 4, m � 15, � � 0, and � � 1. As expected, the Type I error
rate was .05. Fourth, the multilevel models did not perform well
when there were only two clusters. This is not too surprising
given that estimating the cluster-level variance with only two
clusters is tenuous at best. Further, maximum likelihood meth-
ods often do not perform well when sample sizes are small.

Trials occasionally use two to three clusters per condition (see
e.g., Beck, Coffey, Foy, Keane, & Blanchard, 2009), and some
researchers have suggested that three clusters, though perhaps
not optimal, can be sufficient (Öst, 2008). Our results suggest
that at least eight, or preferably 16, clusters are needed to
consistently maintain the Type I error rate.

The fifth conclusion is that the Satterthwaite method for
computing degrees of freedom outperformed the between–
within method (�2 � .08). Given that both the Satterthwaite
and between–within methods used identical standard errors for
fixed effects, the only difference between them is the degrees of
freedom. The between–within method generated inflated Type I
error rates when the number of clusters was low or when cluster
size was relatively large. The Type I error rates for the be-
tween–within method also increased as � increased. In contrast,
the Satterthwaite method maintained Type I error rates at or
near � � .05 except when there were only two clusters. The
Type I error rates were relatively constant across the number of
clusters and cluster size. Likewise, the Type I error rates were
not systematically affected by the magnitude of � as they were
with the between–within method. This difference between the
Satterthwaite and between–within methods is due to the fact
that Satterthwaite degrees of freedom take into account the
magnitude of the between-cluster variance when calculating

Figure 2. Type I error rates (y-axis) for tests of the intervention effect for the random coefficient model
assuming homoscedastic Level 1 residuals. Error rates are presented for various combinations of cluster size (m),
clusters in the clustered condition (c), intraclass correlation (�), ratio of unclustered residual variance to clustered
residual variance (�), and degrees of freedom method (between–within or Satterthwaite). The dashed line is a
reference line representing a Type I error rate of � � .05.
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degrees of freedom and thus are appropriately adjusted as this
variance increases. In contrast, the between–within method
does not take into account the between-cluster variance and
uses only the number of clusters, cluster size, and number of
fixed effects estimated to calculate degrees of freedom.

Bias and Efficiency

Intervention effect. Across models and conditions in the
simulation, bias in the estimate of the intervention effect was
negligible, with bias never exceeding � .02 � . The variability in the

estimates was also relatively small (mean MSE � .1 and maximum
MSE � .4). The MSE increased as m (�2 � .20) and c (�2 � .52)
decreased and as � (�2 � .07) increased. Thus, all five model
types produced unbiased and reasonably efficient estimates of the
treatment effect.

Variance components. We limited our analysis of bias and
efficiency of variance components to the fully and partially clus-
tered models because they estimate the cluster and residual vari-
ances directly. Table 2 presents the mean values for bias and MSE
across models, stratified by � and averaged over m, c, and �.
Across models, variability in the estimates of the variance com-
ponents was typically small, except when � � 2 and when m and
c were small. Across models, bias in �u

2 was most affected by �

(�2 � .17), followed by � (�2 � .04), whether heteroscedasticity
in the residuals was modeled (�2 � .04) and whether the partially
clustered model was used (�2 � .02). Neither c nor m had an
effect (�2 � 0).

The homoscedastic fully clustered model led to biases in �u
2,

which is due to the misspecification of the variance structure (see
Figure 4). In contrast, �u

2 was relatively unbiased for the partially
clustered models. In the partially clustered models, bias was high-
est when m, c, and � were small; was always less than � .2 � ; and

did not consistently impact the Type I error rate. To the extent that
�u

2 is of substantive interest, the partially clustered models will
consistently provide unbiased and interpretable estimates.

Across models, bias in �e1

2 and �e0

2 was most affected by �
(�2 � .40 and .44, respectively), followed by whether the partially
clustered model was used (�2 � .03 and .05, respectively) and
whether heteroscedasticity in the residuals was modeled (�2 � .01
and .02, respectively). Across models, �, c, and m did not have an
effect on bias (all �2 � 0). Bias in the �e1

2 and �e0

2 was evident in
the fully clustered model (see Figure 4) and the homoscedastic
partially clustered model but not the heteroscedastic partially clus-
tered model. In the homoscedastic fully clustered model and
homoscedastic partially clustered model, the direction of the bias
depended upon �. When � � 0.5 (i.e., �e1

2 � �e0

2 ), constraining
the residual variances to be equal produced a negative bias in

Figure 3. Type I error rates (y-axis) for tests of the intervention effect for the heteroscedastic partially clustered
model. Error rates are presented for various combinations of cluster size (m), clusters in the clustered condition
(c), intraclass correlation (�), ratio of unclustered residual variance to clustered residual variance (�), and degrees
of freedom method (between–within or Satterthwaite). The dashed line is a reference line representing a Type
I error rate of � � .05.
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�e1

2 and a positive bias in �e0

2 . Just the opposite was true when
� � 2. Although bias in the Level 1 residual variance does not
dramatically impact Type I error rates for the test of the interven-
tion effect, it will impact the estimate of �, which is often of
substantive interest.

In sum, although all models were unbiased and efficient when
estimating treatment effects, only the heteroscedastic partially
clustered model was consistently unbiased and efficient for both
treatment effects and variance components, because this model
matches the structure of the data in partially clustered designs.
Thus, heteroscedastic partially clustered models using Satterth-
waite degrees of freedom appear to be the model of choice for
analyzing partially clustered data.

Power

Both partially and fully clustered designs require larger sample
sizes than do designs that do not involve nesting. Consequently, it
is essential to use power calculations that account for the structure
of the data when planning studies. Moerbeek and Wong (2008)
provided large sample formulae for partially clustered designs that

do not address degrees of freedom and that will overestimate
power when sample sizes are limited. Roberts and Roberts (2005)
briefly discussed power in small samples but did not provide data.
Additionally, Roberts (2008) has written a power program called
cluspower for Stata that can accommodate two-sample partially
clustered designs.

A flexible alternative to large-sample power formulae and clus-
power is to use Monte Carlo simulation to establish power. In
power simulations, one sets a population intervention effect size
and then simulates data for realistic sample sizes, eliminating the
need to assume large samples. Power is computed as the propor-
tion of replications in the simulation where a statistically signifi-
cant intervention effect was observed. In addition to determining
power in finite samples, power simulation is also flexible in that it
can easily accommodate many design variations (e.g., multiple
intervention conditions, complex variance/covariance structures,
multiple outcomes) and can be more accurate than analytic for-
mulae (Littell, Milliken, Stroup, Wolfinger, & Schabenberger,
2006).

We used Monte Carlo simulation to determine power for the test
of the intervention effect in partially clustered designs for sample

Table 2
Bias and Variability in the Variance Components

Variance component

� � .5 � � 1 � � 2

Bias MSE Bias MSE Bias MSE

Fully clustered homoscedastic
�u

2 �.07 .01 �.02 .02 .44 .42
�e1

2 �.23 .07 �.05 .03 .12 .10
�e0

2 .21 .06 �.05 .03 �.76 .65
Partially clustered homoscedastic

�u
2 .03 .04 .02 .04 �.01 .04

�e1

2 �.23 .04 �.01 .02 .45 .25
�e0

2 .21 .06 �.01 .02 �.43 .24
Partially clustered heteroscedastic

�u
2 .02 .04 .02 .04 .02 .04

�e1

2 �.01 .04 .01 .04 �.01 .04
�e0

2 .00 .01 .00 .04 .00 .16

Note. � � ratio of the unclustered to clustered variances; MSE � mean square error.

Figure 4. Bias in �u
2, �e1

2 , and �e0

2 for the homoscedastic fully clustered model across values of the intraclass
correlation (�) and ratio of unclustered residual variance to clustered residual variance (�). Cluster size was m �
30, and the number of clusters was c � 16. Results were similar with other values of m and c. The dotted line
is a reference line representing zero bias.
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sizes observed in the literature. We set the intervention effect to be
equal to one half of the pooled standard deviation of the outcome.
We used the same values of c, m, ICC, and � as in the previous
simulations because they represent values observed in the litera-
ture. We generated 10,000 data sets for each cell in the simulation
design and fit both the homoscedastic and heteroscedastic partially
clustered models to each data set. Because the between–within
method for calculating degrees of freedom resulted in inflated
Type I error rates and because the Kenward–Roger and Satterth-
waite degrees of freedom produced essentially identical results, we
used only the Satterthwaite degrees of freedom.

Figure 5 presents the results of the power simulations. The
pattern of results is similar to what is seen in fully clustered
designs (Murray, 1998). As � increases, power decreases. Further,
increasing the number of clusters has a bigger impact on power
than does increasing cluster size, although both improve power.
For some studies, there may be natural limits to cluster size, such
as when evaluating group psychotherapy where increasing group
size beyond 8–10 individuals may be clinically problematic. Con-
sequently, it may only be appropriate to increase the number of
groups. In contrast, in school-based research, it may be feasible to
increase both the number of classrooms and the number of students
per classroom sampled. The heteroscedastic models had nearly
identical power to the homoscedastic models, even when � � 1.

Given that the heteroscedastic models are the least biased with
respect to the intervention effect and the variance components and
that there is no penalty with respect to power even when the
residuals are actually homoscedastic, the heteroscedastic models
appear to be the model of choice.

One problem with recommending the partially clustered models
as the de facto standard for partially clustered data is that they
assume that ICC � 0. However, when ICC � 0, fitting the par-
tially clustered model may unnecessarily reduce power. In our
simulations, when ICC � 0, power was consistently over 80% if
c � 8 or 16 and m � 15 or 30. In fact, when c � 4 and m � 30, power
was over 80%. As a follow-up to these observations, we fit a one-way
ANOVA model to the simulated data where ICC � 0 and compared
it with the results of the heteroscedastic partially clustered model.
Because � had little impact on power, we limited these analyses to
the simulated data where � � 1. Results were nearly identical
when using the homoscedastic partially clustered model. When
c � 8 or 16, the partially clustered had slightly less power or
equivalent power to the ANOVA model. When c � 2 or 4, the
partially clustered model had consistently less power than did the
ANOVA model. This is to be expected, given that the available
degrees of freedom will be low when c � 2 or 4. Across levels of
c, power is reduced because of the nonnegativity constraint on �u

2,
which biases the estimate of �u

2 upward and thereby reduces power.

Figure 5. Power (y-axis) for tests of the intervention effect for multilevel models using the Satterthwaite (1946)
method for computing degrees of freedom. The intervention effect was one half of the pooled standard deviation
difference between the clustered and unclustered conditions. Power values are presented for various combina-
tions of cluster size (m), clusters in the clustered condition (c), intraclass correlation (�), ratio of unclustered
residual variance to clustered residual variance (�), and homoscedastic and heteroscedastic model specification.
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The difference in power should be reduced by allowing negative
within-cluster correlations. Regardless, mistakenly using a par-
tially clustered model is only a problem when c is small (cf. Kenny
et al., 1998).

Roberts and Roberts (2005) recommended allocating more par-
ticipants to clustered conditions than unclustered conditions to
maximize power (see also Moerbeek & Wong, 2008). For a given
total sample size, differential allocation can be done by changing
the number of clusters but keeping cluster size constant, changing
cluster size but keeping the number of clusters constant, or a
combination of both. We simulated a partially clustered study to
investigate the benefits of the first two approaches to differential
allocation. We did not investigate combining approaches because
the number of possible combinations is large and makes simulation
prohibitive.

We calculated power to detect a difference of one half of the
pooled standard deviation between a clustered and unclustered
condition for a study with either N � 100 or N � 200 participants.
In the simulations, the allocation ratio represents the number of
participants in the clustered condition compared with the unclus-
tered condition. We compared the power of studies with allocation
ratios of approximately 0.5 to approximately 2.5. For the simula-
tions where we changed the number of clusters but kept cluster
size constant, we set cluster size to m � 5. When N � 100, the
smallest allocation ratio was 35/65 (.54), the next smallest was
40/60 (.67), and so on up to the largest allocation ratio, which was
70/30 (2.33). When N � 200, the smallest allocation was 70/130
(.54), the next smallest was 75/125 (.6), and so on up to the largest

allocation ratio, which was 140/60 (2.33). For simulations where
we changed cluster size but kept the number of clusters constant,
we set the number of clusters to c � 10. In these simulations, when
the allocation ratio is less than one, clusters are smaller than when
the allocation ratio is greater than one. When N � 100, the smallest
allocation ratio was 40/60 (.67), the next smallest was 50/50 (1),
and so on up to the largest allocation ratio, which was 70/30 (2.33).
When N � 200, the smallest allocation ratio was 70/130 (.54), the
next smallest was 80/120 (.67), and so on up to the largest
allocation ratio, which was 140/60 (2.33). We also compared four
� values (.05, .10, .15, .30), set the Level 1 residual variance equal
across conditions, and used Satterthwaite degrees of freedom. We
did not evaluate an � � 0 condition because there would be no
need for differential allocation in that situation.

Four conclusions can be drawn from these simulations (see
Figure 6). First, allocating more participants to the clustered con-
dition by increasing the number of clusters provides a small
increase in power compared with equal allocation. Second, allo-
cating more participants to the clustered condition by increasing
cluster size has almost no impact on power because the benefit of
additional observations per cluster is balanced out by the increased
variance inflation that accompanies increased cluster sizes for a
given �. Third, allocating more participants to the unclustered
condition reduces power and thus is not recommended. Fourth,
given the small increase in power due to unequal allocation, the
decision to use equal allocation will likely depend on other issues
besides power. For example, in a study comparing a group-based
treatment with no treatment, it may be beneficial to allocate more

Figure 6. Power (y-axis) for tests of the intervention effect across a range of allocation ratios of participants
to the clustered and unclustered conditions. The intervention effect was one half of the pooled standard deviation
difference between the clustered and unclustered conditions. Power values are presented across a range of
allocation ratios, intraclass correlations (�), cluster size (m), clusters in the clustered condition (c), and total
sample size (N).
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people to the treatment condition to increase the number of par-
ticipants treated (Roberts & Roberts, 2005).

Roberts and Roberts (2005) provided this formula for optimal
allocation of individuals in large studies that use a partially clus-
tered design:

mc

n
� �1 � �m � 1��, (34)

where m is the cluster size in the clustered condition and � is the
ICC. The ratio is the ratio of the sample size in clustered condition
compared with the unclustered condition. They noted that in small
studies the optimal allocation ratio is larger than the value pro-
duced by Equation 34. Our results are consistent with this. Equa-
tion 34 assumes a constant cluster size, and thus the left-hand
panels of Figure 6 can be compared with Equation 34. For exam-
ple, when � � .10 and m � 5, Equation 34 suggests that the
optimal allocation ratio is 1.18, whereas Figure 6 suggests that the
optimal allocation is closer to 1.5. This is true regardless of sample
size, although the difference between Equation 34 and the simu-
lation results is smaller when N � 200. Thus, researchers can use
simulation methods to accurately determine the optimal allocation
of participants to condition when designing partially clustered
studies.

The power simulations highlight the need to account for any
clustering during the planning stage of an intervention study. If
researchers do not plan for clustering, they may end up in a
difficult situation with no good options for analyzing and inter-
preting their results. For example, consider a partially clustered
intervention with one clustered and one unclustered condition. The
clustered condition includes 40 participants, divided evenly among
four clusters. The unclustered condition also includes 40 partici-
pants. One could use a multilevel model with Satterthwaite degrees
of freedom to estimate the intervention effect. The multilevel
model maintains the nominal Type I error rate, but the power to
detect an intervention effect of d � 0.5 will be low (power � 0.4).
Although the multilevel model in principle allows for generaliza-
tions beyond the clusters included in the study, the quality of those
generalizations will be suspect, given that there are only four
clusters. As previously discussed, alternatively incorporating clus-
ter as a fixed effect is problematic because (a) it limits the results
of the analysis to the specific clusters included in the study and (b)
if there is variation among clusters in the population, it increases
the rate of Type I errors for the intervention effect if one attempts
to make inferences beyond the specific clusters in the study.
Finally, whatever the modeling strategy, if the design includes few
clusters, it is difficult to learn about differences among clusters.

Substantive Example: The Body Project

To illustrate the multilevel model for partially clustered data, we
reanalyzed data from Stice, Shaw, Burton, and Wade (2006),
which evaluated the Body Project, a dissonance-based eating dis-
order prevention intervention. Female adolescents (N � 480) were
randomly assigned to one of four conditions: a dissonance inter-
vention (n � 114), a healthy-weight management program (n �
117), an expressive writing control condition (n � 123), and an
assessment-only control condition (n � 126). The dissonance

intervention was delivered in 17 groups (average m � 6.7), and the
healthy-weight program was delivered in 18 groups (average m �
6.5). The expressive writing and assessment-only conditions were
unclustered. We focus our discussion on one of the primary out-
comes: thin-ideal internalization (TII), which was measured with
the Ideal-Body Stereotype Scale–Revised (Stice, 2001; see Stice et
al., 2006, for a complete description of the intervention, partici-
pants, procedures, and outcomes).

The Level 1 and Level 2 equations for the Body Project data are
similar to Equations 19–21 but need to be expanded to incorporate
the four conditions and a baseline value of TII.2 Specifically, the
Level 1 equation for the Body Project is as follows:

TIIPOSTij � 	0j � 	1jDISij � 	2jHWij � 	3jEWij

� 	4jTIIPREij � eij, (35)

where TIIPOSTij is the posttest value of TII for person i in group
j and DISij, HWij, and EWij are indicator (dummy) variables for the
dissonance, healthy-weight, and expressive writing conditions,
respectively. The assessment-only condition was the reference
category. The regression coefficients for the indicators are 	1j, 	2j,
and 	3j, and they capture differences relative to the assessment-
only control condition. TIIPREij is the baseline value of TII, and
	4j is the regression coefficient for TIIPRE. Finally, eij represents
the individual-level residual.

The Level 2 equations are

	0j � 
00, (36)

	1j � 
10 � u1j, (37)

	2j � 
20 � u2j, (38)

	3j � 
30, (39)

and

	4j � 
40, (40)

where 
00 is the average intercept and represents the mean of the
reference condition (i.e., assessment only) when the baseline value
of TII is zero. We centered TIIPRE around its grand mean to make
the zero value more interpretable. The parameters 
10, 
20, and 
30

are interpreted, respectively, as the mean difference between the
DIS, HW, and EW conditions relative to the assessment-only
condition, controlling for TIIPRE. The u1j and u2j terms are cluster-
level disturbances that allow the intervention effects for DIS and
HW to vary across cluster. We did not include cluster-level dis-

2 An alternative to adjusting for baseline values of the dependent vari-
able is to use a repeated-measures approach, where the baseline value is
part of the outcome vector. In randomized trials, adjusting for baseline
values is typically the most powerful analysis. However, the adjustment for
baseline approach is often not appropriate in quasi-experiments or obser-
vational studies, because the assumption of equal distribution of the base-
line values across conditions is not plausible (Fitzmaurice, Laird, & Ware,
2004). In those cases, we recommend using a repeated-measures approach
or the equivalent approach of change scores to analyzing partially clustered
data.
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turbance terms for 
00 or 
30 because both the EW and assessment-
only conditions were unclustered.

A composite model can be obtained by substituting Equations
36–40 into Equation 35 as follows:

TIIPOSTij � 
00 � 
10DISij � 
20HWij � 
30EWij � 
40TIIPREij

� u1jDISij � u2jHWij � eij. (41)

Note that there are only cluster-level residuals associated with the
two grouped conditions. This model assumes that individual- and
cluster-level residuals are independent and normally distributed as

eij � N�0, �e
2�, (42)

u1j � N�0, �u1

2 �, (43)

and

u2j � N�0, �u2

2 �. (44)

� for the dissonance condition is

�DIS �
�u1

2

�u1

2 � �e
2. (45)

� for the healthy-weight condition is

�HW �
�u2

2

�u2

2 � �e
2. (46)

We conducted two multilevel analyses using the Body Project
data. In the first analysis, we assumed that the Level 1 residuals
were homoscedastic and thus constrained the residual variances to
be equal. In the second analysis, we allowed the Level 1 residual
variances to differ across all four intervention conditions. In ad-
dition to estimating an overall intervention effect, we also used
contrasts to test three hypotheses described in the original Body
Project report (see Stice et al., 2006, p. 264). Specifically we tested
(a) whether the dissonance and healthy-weight conditions differed
from the expressive writing and assessment-only conditions, (b)
whether the dissonance condition differed from the healthy-weight
condition, and (c) whether the healthy-weight condition differed
from the expressive writing and assessment-only conditions. All
models were estimated using the SAS MIXED procedure and used
the Satterthwaite method for computing degrees of freedom. The
online supplemental material provides annotated SAS code for
estimating this model.

Table 3 presents the results of the analyses. In the homoscedas-
tic model, the overall intervention effect was significant, F(3,
71.7) � 10.44, p � .01, indicating differences between the treat-
ment conditions. The contrasts indicated that the dissonance and
healthy-weight conditions significantly reduced TII compared with

Table 3
Intervention Effects for Thin-Ideal Internalization (TII) From the Body Project

Effect and variable

Homoscedastic residuals Heteroscedastic residuals

Estimate Test Estimate Test

Fixed effects


00: Intercept 3.55 t(473) � 2.53�� 3.55 t(432) � 2.10�


10: DIS �0.44 t(28.6) � �5.25�� �0.44 t(23.2) � �5.51��


20: HW �0.24 t(35.1) � �2.65� �0.24 t(30.7) � �2.74��


30: EW �0.07 t(443) � �1.02 �0.07 t(239) � �1.12

40: Baseline TII 0.83 t(474) � 17.27�� 0.85 t(445) � 18.21��

Random effects

�u
2

DIS 0.04 z � 1.28 0.03 z � 0.93
HW 0.06 z � 1.77� 0.05 z � 1.56†

�e
2

DIS 0.27a z � 14.88�� 0.34 z � 6.84��

HW 0.27a z � 14.88�� 0.33 z � 7.12��

EW 0.27a z � 14.88�� 0.25 z � 7.78��

AO 0.27a z � 14.88�� 0.20 z � 7.87��

�DIS .13 .08
�HW .18 .13

Intervention effects

Overall F(3, 71.7) � 10.44�� F(3, 62.3) � 11.32��

DIS � HW vs. EW � AO �0.30 t(64) � �4.97�� �0.31 t(57.3) � �5.10��

DIS vs. HW �0.21 t(32.4) � �1.99† �0.21 t(32.1) � �1.99†

HW vs. EW � AO �0.20 t(26.4) � �2.44� �0.20 t(25.5) � �2.47�

Note. DIS � dissonance; HW � healthy weight; EW � expressive writing; AO � assessment only.
a These residual variances were constrained to be equal.
† p � .06. � p � .05. �� p � .01.
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the expressive writing and assessment-only conditions, t(64) �
–4.97, p � .01. Further, the healthy-weight condition significantly
reduced TII compared with the expressive writing and assessment-
only condition, t(26.4) � –2.44, p � .05. The dissonance condition
resulted in lower TII, but this difference was not statistically
significant, t(32.4) � –1.99, p � .06. The cluster-level variances
for the dissonance and healthy-weight conditions were .04 and .06,
respectively, indicating some variability in TII across clusters (i.e.,
intervention groups). Estimates of � for the dissonance and
healthy-weight conditions were .13 and .18, respectively, indicat-
ing that 13% and 18% of the variance in dissonance and healthy-
weight conditions was associated with group membership.

The heteroscedastic model significantly improved model fit, as
evidenced by a likelihood ratio test, �2(3) � 8.8, p � .03. The
cluster-level variances in the dissonance and healthy-weight con-
ditions were similar to the homoscedastic models (see Table 3). In
contrast, the Level 1 residual variances changed substantially
compared with the homoscedastic models. In the heteroscedastic
models the Level 1 residual variances were larger for the clustered
conditions and smaller for the unclustered conditions compared
with the homoscedastic models. The increased Level 1 variance in
the clustered conditions suggests that the group-based interven-
tions increased the differences between the participants compared
with the control conditions. The differentiation may occur because
some participants are well suited to a group-based intervention and
others not as much. Thus, variability may increase in the clustered
conditions compared with the unclustered conditions because
some participants respond well (or poorly) to the group environ-
ment.

Regardless of the reason, these changes in the random effects
reduced �s in the heteroscedastic models to .08 and .13 in the
dissonance and healthy-weight conditions, respectively. These
changes in the random effects can impact the standard errors for
fixed effects, such as the intervention effect. In our case, the
intervention effects were not substantially affected. However, in
other studies such differences could be more impactful, and thus
the degree of heteroscedasticity should be tested.

Conclusions

Despite the fact that partially clustered trials are as common as
fully clustered trials (Bauer et al., 2008), methodological work on
partially clustered intervention trials has only recently begun.
Several recent articles, including the present one, have outlined a
flexible multilevel modeling approach for analyzing partially clus-
tered data. The new simulation results presented here indicate that
a multilevel model adapted to match the partially clustered design
improves upon models that ignore clustering, treat clusters as a
fixed effect, or treat the design as if it were fully clustered. Further,
random coefficient multilevel models maintain the nominal Type I
error rate when Satterthwaite or Kenward–Roger degrees of free-
dom are used. This information is valuable because some software
programs use only one method for calculating degrees of freedom
or use a z distribution.

Addressing the methodological issues associated with partially
clustered designs is not as simple as just applying the multilevel
model, because most partially clustered studies do not include a
sufficient number of clusters to have adequate power. Generally
speaking, sample sizes in partially clustered designs should in-

crease, especially with respect to the number of clusters. At a fixed
total sample size, allocating more participants to the clustered
condition by increasing the number of clusters provides a small
benefit in this regard. Regardless, it is strongly recommended that
researchers evaluating interventions in partially clustered designs
carefully consider the methodological issues outlined in this article
when designing their studies and analyzing the resulting data.
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