
Using a Shared Parameter Mixture Model to Estimate Change During
Treatment When Termination Is Related to Recovery Speed

Nisha C. Gottfredson and Daniel J. Bauer
University of North Carolina at Chapel Hill

Scott A. Baldwin and John C. Okiishi
Brigham Young University

Objective: This study demonstrates how to use a shared parameter mixture model (SPMM) in longitu-
dinal psychotherapy studies to accommodate missingness that is due to a correlation between rate of
improvement and termination of therapy. Traditional growth models assume that such a relationship does
not exist (i.e., assume that data are missing at random) and produce biased results if this assumption is
incorrect. Method: We used longitudinal data from 4,676 patients enrolled in a naturalistic study of
psychotherapy to compare results from a latent growth model and an SPMM. Results: In this data set,
estimates of the rate of improvement during therapy differed by 6.50%–6.66% across the two models,
indicating that participants with steeper trajectories left psychotherapy earliest, thereby potentially
biasing inference for the slope in the latent growth model. Conclusion: We conclude that reported
estimates of change during therapy may be underestimated in naturalistic studies of therapy in which
participants and their therapists determine the end of treatment. Because non–randomly missing data can
also occur in randomized controlled trials or in observational studies of development, the utility of the
SPMM extends beyond naturalistic psychotherapy data.
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It is important for clinicians, patients, policymakers, and re-
searchers to know how much time patients need in therapy to
accrue clinically significant benefits. Such information is essential
for planning and allocating resources, and it can be used as a
benchmark against which an individual patient’s progress is
tracked (cf. Finch, Lambert, & Schaalje, 2001). Characterizing the
typical rate of improvement in response to a particular dose of
therapy is complicated in naturalistic settings in which the dose
of therapy is determined by the patient and therapist rather than by
a researcher or other independent influence (Feaster, Newman, &
Rice, 2003). In naturalistic settings, the amount of time that one
spends in therapy is inversely related to speed of recovery: Patients
who recover most quickly leave therapy earliest (Baldwin, Berkel-
jon, Atkins, Olsen, & Nielsen, 2009; Barkham et al., 2006). More-
over, data collection often only occurs when patients are in ther-
apy. Consequently, far more observations are available for patients
who remain in therapy (i.e., those who change the slowest) than for
patients who terminate.

This type of missing patient data can be considered nonignor-
able or nonrandom because the longitudinal process that governs

change in psychological functioning is related to the process
governing termination. Patient data from (nonexistent) sessions
after termination are considered missing in situations for which it
would be desirable to know what the symptomatology of a patient
would have looked like had they continued therapy. In particular,
this type of nonrandom missingness is random coefficient depen-
dent because the latent trajectory underlying an individual’s rate of
change is directly related to missingness.1 In contrast, many com-
mon approaches to accommodating missing data, such as those
implemented in latent growth and multilevel growth models, as-
sume that missing data are missing at random (MAR; e.g., when
maximum likelihood or multiple imputation is implemented) or
missing completely at random (MCAR). MCAR is a subtype of
MAR that is rarely observed in practice unless data are missing by
design. Violating the assumption of random missingness can lead
to biased results and inaccurate information about expected rates
of change.

In this article, we illustrate a method for incorporating informa-
tion about random coefficient-dependent missing data into a
growth model to obtain results that are directly comparable to
those obtained using a standard growth model. We apply this
model, referred to as a shared parameter mixture model (SPMM),
to a naturalistic data set in which the dose of therapy was not
controlled by the researcher. In previous work, Gottfredson, Bauer,
and Baldwin (in press) presented technical details on the SPMM,
along with results from a Monte Carlo study of the model’s

1 Random coefficient-dependent missingness is a subtype of a more
general type of nonrandom missingness called outcome-dependent miss-
ingness (Gottfredson, Bauer, & Baldwin, in press; Little, 1995). Little’s
(1995) seminal article provides an excellent primer on types of missing
data.
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relative performance under a variety of data conditions. Here, we
minimize the presentation of technical details and instead aim to
provide an accessible overview of the SPMM and an illustration of
how it can be applied to strengthen research in clinical psychology.

The outline of the article is as follows. We begin by orienting
the reader to our motivating data analysis problem: We desire to
measure psychological change in a naturalistic study of psycho-
therapy treatment. Second, we briefly review the MAR assumption
inherent in standard methods for modeling change and discuss how
violations of this assumption lead to biased results in the context of
a naturalistic treatment study. Third, we introduce the SPMM as a
statistical method that is useful when individual differences in
change (e.g., differences in rate of improvement during treatment)
may be related to the presence, pattern, or amount of missing data.
Fourth, we apply the SPMM to the naturalistic psychotherapy data
set and contrast the results with a traditional latent growth curve
model. Finally, we discuss implications of our results for the study
of naturalistic change during therapy.

Motivating Example: Naturalistic Change During
Psychotherapy Treatment

Our goal is to obtain reliable estimates of expected change over
time in psychological functioning on the basis of repeated outcome
measures collected from patients enrolled in psychotherapy. Fur-
thermore, we are interested in how expected rates of improvement
vary as a function of a patient’s diagnosis (i.e., adjustment disor-
der, anxiety disorder, mood disorder, or some other disorder) and
demographic characteristics (i.e., age and gender). Such informa-
tion is useful for establishing a benchmark against which the
progress of new patients can be measured. In this study, as in most
other naturalistic studies of change during treatment, assessment of
psychological functioning was not attempted after the termination
of therapy. Thus, one might argue that data are not literally missing
for individuals who have completed therapy because they were
never intended to be collected. However, not all patients decide to
leave therapy at the exactly the same level of psychological func-
tioning and thus the process governing termination is inherently
unobservable. Therefore, the absence of data past an individual’s
completion of therapy are indeed missing in the sense that an
analyst wishing to make an inference about the expected trajectory
of a future patient with similar characteristics will not have data
with which to make an informed prediction.

Missing Data Assumptions

The MAR assumption is violated when the cause of missingness
is related to the outcome of interest but this cause is not included
as a measured variable in the analytic model. Given this definition,
any situation in which the cause of treatment termination is related
to treatment trajectories (i.e., not random) and not modeled using
measured variables is a violation of the MAR assumption. If the
MAR assumption is violated, then the probability that a given
repeated outcome measure (yti) is missing depends on the under-
lying value of yti itself, even after accounting for all measured
variables in the model. This would occur, for instance, if latent
(i.e., inherently unmeasured) individual differences in rates of
change give rise to earlier or later termination of therapy. For
example, patients who improve relatively rapidly leave treatment

sooner than do patients who improve relatively slowly. In this
case, the missing data can be said to be missing not at random
(MNAR) because of a random coefficient-dependent missingness
process, in which the random coefficients refer to patient-specific
rates of change. If a standard growth model is used to analyze data
in which this type of nonrandom missingness is present, bias may
occur in any of the parameter estimates and/or their standard errors
(Gottfredson et al., in press). There is no formal test to evaluate
whether missing data are MAR, parameter bias will not be detect-
able with fit statistics (Enders, 2011), and parameter bias will lead
to incorrect inference about typical growth trajectories and about
the degree of normative variation around typical growth trajecto-
ries. The degree of parameter bias that may exist within a single
application may not be exceptional. Over time and across many
studies, however, consistently biased results may have a serious
impact on effect size estimates and practical implications drawn
from such biased effect size estimates. The only way to detect
whether bias due to nonrandom missingness might plausibly be
occurring in one’s model is to apply sensitivity analyses with
alternative models that do not rely on the assumption that missing
data are MAR.2

Random coefficient-dependent missingness is likely to occur in
naturalistic treatment studies because the decision to end treatment
may depend on an individual’s latent change trajectory. But con-
cerns about this type of MNAR missingness should not be limited
to naturalistic studies. Even if the duration of treatment is specified
by design, as in many randomized control trials, patients may drop
out of a study at will. Even intermittent missing data may be
MNAR and arise as a function of latent growth trajectories. Inter-
mittent missingness may occur if patients are assessed on a sched-
ule and they fail to show up at one time point but do not fully drop
out of the study. If a patient’s therapeutic trajectory is related to the
probability of missing an assessment, random coefficient depen-
dent missingness is present. Morgan-Lopez and Fals-Stewart
(2007) discussed this type of missing data within the context of
group-based therapy. Although our motivating example involves
the termination of treatment, which can be thought of as a kind of
dropout, the model described in this article is also appropriate to
use with intermittent random coefficient missingness.

Although we regard the SPMM as a useful supplement to the
data analytic toolkit of clinical researchers, like any other tool, it
should be applied only when appropriate. There are three situations
in which the SPMM is not appropriate. The first is when missing
data are MNAR, but missingness does not depend on a patient’s
underlying trajectory. An example would be the occurrence of an
unpredictable, catastrophic event leading to sudden worsening of a
patient’s depression and need for hospitalization and discontinua-
tion of the treatment plan. Second, the SPMM performs poorly
when there are relatively few measurement occasions. Gottfredson
et al. (in press) found that the model performs well with 10
assessments, but not with five. For research designs with five or
fewer measurement occasions, we recommend using less complex
pattern mixture models (Hedeker & Gibbons, 1997; Little, 1993;

2 Sensitivity analyses are the best option for addressing nonrandom
missingness that may exist. However, it is important to emphasize that a
sensitivity analysis is not equivalent to a formal test for parameter bias.
Such tests do not yet exist.
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described below). Finally, Gottfredson et al. (in press) found that
a U-shaped missingness mechanism is difficult to approximate
using an SPMM. If patients are most likely to leave therapy if they
are doing exceptionally well or exceptionally poorly, then a
U-shaped selection mechanism exists. If a U-shaped missingness
mechanism is known to exist, then a parametric shared parameter
model (Wu & Carroll, 1988; described below) may be a better
choice.

Missing Data Models

Three popular models for handling nonignorable missing data
include pattern mixture models (Little, 1993; Roy, 2003), para-
metric shared parameter models (Albert & Follman, 2009; Wu &
Carroll, 1988), and selection models (Diggle & Kenward, 1994;
Heckman, 1979). Pattern mixture models are useful when only a
relatively small number of repeated measures have been collected
and few missing data patterns are present (Hedeker & Gibbons,
1997); parametric shared parameter models and selection models
are useful when the nonignorable missing data mechanism is well
understood and can be modeled with great accuracy (Winship &
Mare, 1992). In addition, selection models are the only choice for
handling a particularly difficult type of nonrandomly missing data:
those that are missing as a function unmeasured, time-varying
variables or residual error (e.g., a catastrophic event). However, all
of these methods rely on stringent implicit or explicit assumptions
about the process giving rise to missing data (Kenward, 1998;
Little, 1994; Tsonaka, Verbeke, & Lesaffre, 2009; Vonesh,
Greene, & Schlucher, 2006; Winship & Mare, 1992).

Pattern mixture models condition growth parameters on ob-
served patterns of missing data. In practice, this means that the
pattern of missing data is included in the model (e.g., via binary
coding variables) as a predictor of trajectory intercepts and slopes
(Hedeker & Gibbons, 1997). When there are more than a handful
of observed patterns of missing data, it is often necessary to
combine some patterns together. In the case of a naturalistic study
of psychotherapy, such an approach would involve an ad hoc
decision by the analyst regarding which patterns of missingness
are unique from one another and which may be combined. A
further drawback to this approach is the pragmatic difficulty that
some patterns necessarily contain much less information about the
shape of growth than other patterns, leading to great uncertainty
about trajectories of the patients who terminate therapy after a few
sessions. A recent extension of this approach by Roy (2003) uses
latent rather than observed missing data patterns to help avoid
pitfalls related to sparse missingness patterns; however, the other
concerns remain.

Traditional shared parameter models and selection models re-
quire the user to provide a specific model for the missing data, and
the parameter estimates for the trajectory model depend on this
missing data model. In the case of a naturalistic psychotherapy
study, these models would require the analyst to specify, using a
parametric model, the underlying cause(s) of termination or inter-
mittent missingness. The difficulty is that these causes are often
not known precisely. Because the longitudinal model for change
during therapy is conditioned on this model, any misspecification
in the missing data model will propagate to the growth parameters.
Thus, although shared parameter models and selection models
have the benefit of being conceptually straightforward, they are

heavily model dependent and sensitive to misspecification of the
missing data model (e.g., omitted covariates, misspecification of
the form of missingness, or violations to distributional assump-
tions; Kenward, 1998; Tsonaka, Verbeke, & Lesaffre, 2009;
Vonesh, Greene, & Schlucher, 2006; Winship & Mare, 1992).

In contrast, the SPMM that we describe requires relatively few
assumptions about the causes underlying the decision to terminate
treatment or reasons for intermittently missing treatment sessions.3

Furthermore, results obtained using SPMM are directly compara-
ble to those obtained using a standard growth modeling technique
such as latent curve modeling or multilevel modeling. The SPMM
procedure works by, first, empirically approximating the associa-
tion between patterns of missing data and the growth trajectory
using latent classes. This step is akin to the step of creating a
missing data model in a parametric shared parameter model, but
the model is determined empirically rather than through an ex-
plicit, user-inputted model. More specifically, one determines the
number of latent classes needed to account for the dependence
between the missing data process and the latent change process.
Second, the analyst averages across latent missingness classes to
obtain a solution that is comparable to that which would be
obtained using a standard growth model.4

Unlike a standard growth model, the SPMM allows for an
association between repeated measures and missing data. The
SPMM is a semiparametric model (e.g., Heckman & Singer, 1984)
in the sense that the analyst is not required to specify an explicit
parametric association between individual growth trajectories and
missing data; the association is instead approximated during esti-
mation. This empirical approximation is achieved via a mixture of
latent classes, each with its own set of growth parameter estimates
and missing data patterns. Enough latent classes are estimated so
that the overall association between missing data and growth
trajectories can be characterized by the differences across the
latent classes. The number of latent classes chosen for a specific
analysis is purely data driven and, if enough classes are estimated,
will necessarily result in conditional independence between miss-
ing data indicators and growth parameters. As described more fully
below, independence between missing data and latent growth
parameters, conditional on latent class, is the key to reducing
parameter bias due to an MNAR missing data process.

Details on Estimating an SPMM

To estimate an SPMM, it is useful to first specify a latent curve
model to characterize the individual trajectories, as shown in the
top panel of Figure 1 (Bollen & Curran, 2006). Trajectories may
take on a variety of forms (e.g., quadratic, exponential, piecewise).

3 The class of models that we term SPMM originated with a model
proposed by Lin, McCulloch, and Rosenheck (2004). A number of re-
searchers have suggested variations on the model (Beunckens, Molen-
berghs, Verbeke, & Mallinckrodt, 2008; Proust-Lima, Joly, Dartigues, &
Jacqmin-Gadda, 2009; Tsonaka et al., 2009). An in-depth overview of the
development of SPMM and similar models is given by Gottfredson (2011)
and by Muthén, Asparouhov, Hunter, and Leuchter (2011).

4 The second step is crucial for the SPMM. Direct applications of
mixture modeling do not implement this step, instead interpreting trajec-
tories within latent classes substantively (e.g., Morgan-Lopez & Fals-
Stewart, 2007; Muthén et al., 2011). Results generated from these models
are heavily model and assumption dependent and trajectories are not
directly comparable to estimates obtained using latent curve models.
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The linear model shown in the figure predicts T repeated measures
(a T � 1 vector) for individual i as a function of two individually
varying growth factors: a latent intercept (�0i) and a latent slope
(�1i). In our case, the repeated measures are 12 repeated assess-
ments of psychological functioning. The random intercept is an
individual’s baseline level of functioning, and the slope is an
individual’s rate of change. Average trajectories in the sample are
characterized by the mean intercept (�0) and the mean slope (�1).
In the figure, growth factor means are informed by a time-invariant
predictor, Xi. Xi may represent treatment modality, a clinical di-
agnosis, or gender, for instance.

The next step in fitting an SPMM is to include one or several
missing data indicators (Ri). This approach is shown at the bottom
of Figure 1. Like in our analysis, Figure 1 uses a single indicator—
the number of sessions attended by a given individual—to sum-
marize missingness. A variety of alternative methods for summa-
rizing the missing data patterns are possible, and many choices are
described by Roy (2007). One method is to use a dichotomous
missing data indicator (i.e., missing or not missing) for every
observation occasion. Alternatively, one might condense this in-

formation using meaningful summary variables. Gottfredson (2011)
showed via simulation methodology that it is desirable to limit the
number of missing data indicators when information about miss-
ingness can be adequately summarized with fewer indicators,
because doing so increases computational and statistical effi-
ciency. In this instance, the bulk of the useful information about
missingness can be condensed into a single number summary:
number of sessions attended.

In lieu of an explicit, parametric model that lays out the precise
causes underlying termination of treatment (i.e., a shared param-
eter model specifying a direct path between latent growth factors
�i and missingness indicators Ri), the association between Ri and
the growth factors �i is approximated using a mixture of latent
classes, represented as Ck (k � 1, . . . K) in Figure 1. The
termination process is assumed to be random (i.e., unrelated to the
growth trajectory) within each of the K missingness classes (i.e.,
there is no association between growth parameters and number of
sessions attended within each class). As mentioned previously, this
assumption is reasonable so long as one has allowed a large
enough K, as dictated by information criteria and parameter sen-
sitivity (the process for enumerating classes is described below).
Conceptually, if the individuals within a latent class are suffi-
ciently homogeneous in their patterns of change and missing data,
no residual relationship should exist between missing data and
change trajectories within the class. In other words, it is assumed
that the selection process that generates non–randomly missing
data can be adequately approximated by splitting the population
into a finite number of relatively homogeneous groups, each with
their own mean growth trajectory and missing data pattern. As
shown in Figure 1, each class has a different intercept and slope,
and a different average number of sessions attended, with individ-
ual variability in both the trajectories and number of sessions
attended within each class. Once the dependence between missing
data and growth trajectories has been approximated using latent
classes, trajectories within each class are weighted proportionally
to the percentage of the population that is estimated to belong to
each class and averaged. This averaging process is described later.

In practice, one chooses a handful of possible values for K (e.g.,
K � 1, 2, 3, or 4), compares the fit across these models, and
evaluates the degree of parameter sensitivity as a function of the
number of latent classes in the model. As a result, it is possible to
empirically meet or approximate the condition of random miss-
ingness within each latent class. Each latent class k is characterized
by a mixing proportion �k that indicates the relative weight of the
class in determining the overall pattern of growth. These mixing
proportions are used to aggregate within-class trajectory estimates
(�k and �k) to obtain overall growth parameters that are compa-
rable with those produced by a latent curve model (LCM) but
account for the possibility of random coefficient-dependent miss-
ing data. We now describe this process.

Obtaining Results That Are Comparable to a
Standard Growth Model

Because the classes estimated in a SPMM are not thought to be
literal, distinct groups but are used only as a statistically expedient
method for approximating the association between trajectories of
change and missing data, and because the goal of such an analysis
is to obtain results that are directly comparable with a standard

Figure 1. Contrasting path diagrams of a latent curve model (top) and a
shared parameter mixture model (SPMM; bottom). McArdle and Epstein’s
(1987) reticular action model notation is used. Circles represent unob-
served or latent variables (i.e., growth factors �, latent classes Ck, distur-
bances �, and error terms �); rectangles represent measured variables; the
triangle represents the mean structure (i.e., intercepts �) for the growth
factors. The SPMM semiparametrically incorporates information about the
dependence between missing data (operationalized as the number of ses-
sions attended) and the trajectory of psychological functioning (yt). This is
done by allowing the growth factor means �0 and �1, as well as the mean
number of sessions attended, to vary across K latent classes.
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growth model, it is recommended that these class-specific param-
eters not be interpreted as substantively meaningful. Alternative
models exist for researchers who desire to use direct applications
of mixture modeling to make inferences about latent groups of
people (Morgan-Lopez & Fals-Stewart, 2007; Muthén et al.,
2011). However, in our view, focusing on within-class parameter
estimates may lead to a mistaken reification of these parameter
estimates (Bauer, 2007; Eggleston, Laub, & Sampson, 2004;
Sampson & Laub, 2003).

Aggregate values for the growth parameter means or intercepts
are calculated by averaging over the estimated latent-class specific
growth factor means. Averages are taken by weighting each latent
group’s mean using the estimated class proportion, �k (Bauer,
2007; Vermunt & van Dijk, 2001):

�̂ � �
k�1

K

�̂k�̂k.

Similarly, aggregate variance and covariance estimates for the
longitudinal growth factors can be calculated by combining the
between-class covariance matrix (i.e., the variance and covariance
in the intercept and slope accounted for by between-class differ-
ences in means for these growth factors; class proportions and
growth factor means from different classes are denoted using the
subscripts j and k) with the estimated within-class covariance
matrix for the growth factors (i.e., the degree to which individuals
deviate from the average trajectory within their latent class; �̂), as
shown below (Bauer, 2007; Vermunt & van Dijk, 2001):

�̂ � �
k�1

K

�
j�k�1

K

�̂k�̂j��̂k � �̂j���̂k � �̂j�� � �̂

Standard errors for the aggregate estimates can be computed via
the delta method (available in Mplus; Raykov & Marcoulides,
2004). The delta method is a technique for estimating standard
errors via a linear approximation when the analytical computation
of exact standard errors is not possible.

Demonstration of SPMM

In a prior analysis of this data, Baldwin, Berkeljon, Atkins,
Olsen, and Nielsen (2009) showed that individual trajectories of
psychological functioning differ as a function of the number of
psychotherapy sessions attended, that is, that the amount of change
observed over sessions was related to the dose of psychotherapy
received. The purpose of Baldwin et al.’s (2009) article was to
demonstrate that the effectiveness of therapy is dose dependent.
The lack of independence between therapy termination and rate of
improvement that was demonstrated by these authors provided the
motivation for the current article: Rate of change that depends on
the dose (i.e., termination date) is a clear violation of the MAR
assumption, making these data ideal for illustrating the application
of the SPMM.

For the purpose of this article, we are interested in obtaining a
description of the average response to therapy as a function of
sessions attended (and variability around the average), irrespective
of the dose that is ultimately received by any one patient.5 We are
also interested in obtaining trajectory estimates conditional on
psychological diagnosis, gender, and age. For this purpose, the
SPMM provides an optimal modeling approach. We use the num-

ber of sessions attended as the observed missing data indicator, Ri.
We first estimate change during treatment with an LCM. Second,
we estimate a SPMM to examine the sensitivity of LCM results to
the suspected nonrandom termination of therapy.

Method

Participants and Procedure

Participants were drawn from an archival data set of therapy
outcomes that is maintained by a large university counseling
center. See Baldwin et al. (2009) for a full description of the
sample, measures, and study procedures. Participants in this study
were completing their first round of individual psychotherapy.
Patients who attended at least three but no more than 27 sessions
were included in the sample (most clients attended fewer than 27
sessions and those attending only two sessions did not provide
enough information to calculate growth trajectories). All partici-
pants completed therapy within a 40-week period (M � 6.89
weeks, SD � 7.46 weeks). Patients discontinued therapy at their
(and their therapists’) discretion. Only data from the first 12
sessions are analyzed because 75% of patients had dropped out of
therapy by this point; extrapolation beyond this point would be
imprecise. The first session is coded 0 to represent baseline func-
tioning and the last is coded 11.

Of the 4,676 patients analyzed in the sample, the median length
in treatment was eight sessions. The majority of patients had
adjustment disorders (37.96%), mood disorders (24.59%), or anx-
iety disorders (12.13%). Most patients were single (65.06%),
White (89.07%), and female (62.32%). Ages ranged from 17 to 60
years, with a mean age of 22.28 years (SD � 3.70 years).

Psychotherapy Outcome Measure

The Outcome Questionnaire–45 (OQ-45), a 45-item self-report
sum score measure of overall psychological functioning (Lambert
et al., 2004), was used to assess patients’ symptom trajectories
over time. The measure assesses three domains: subjective dis-
comfort, interpersonal relationships, and social role performance.
Patients indicated their level of agreement on a 5-point scale.
Possible scores range from 0 (high functioning) to 180 (low func-
tioning), and they ranged from 0 to 166 in this sample. The OQ-45
has been shown to have high internal consistency, test–retest
reliability, and concurrent validity (Baldwin et al., 2009; Lambert
et al., 2004; Snell, Mallinckrodt, Hill, & Lambert, 2001). Partici-
pants completed the OQ-45 at initial intake and prior to each
therapy session.

Time Metric

Time may be coded using a variety of different metrics (e.g.,
weeks or days in treatment, treatment session; Biesanz, Deeb-
Sossa, Papadakis, Bollen, & Curran, 2004). Sessions were the

5 As an aside, Baldwin et al.’s (2009) analysis of the data is akin to using
a traditional pattern mixture modeling approach because trajectories of
change were effectively conditioned on observed dropout occasion (i.e., the
dose received). This analytic approach was appropriate for the purpose of
their article.
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preferred unit of time for this analysis because sessions were the
most relevant to the substantive question of interest: What is the
typical rate of response to the receipt of psychotherapy, and how
much individual variation exists in response to therapy?

LCM Analysis

We assessed a variety of unconditional growth models using an
LCM before deciding to model change as a function of the log of
time, which allowed us to capture the more rapid changes that
occur early in treatment followed by more gradual changes at
subsequent sessions: OQ45it � �01i � �01i ln(Session � 1) � εit.
A visual inspection of individual trajectories, observed using
OLSTraj (Carrig, Wirth, & Curran, 2004), supported this transfor-
mation. Here, OQ45ti represents patient i’s score on the OQ-45 at
session t, �0i represents baseline psychological functioning for
individual i, �1i represents individual rate of change in psycholog-
ical functioning, and εti represents an individual’s time-specific
deviation from their expected trajectory. The variables �0i and �1i

are assumed to be normally distributed in the population and are
free to covary.

After settling on an unconditional trajectory model, we added
the following predictors of the latent intercept and slope: disorder
status (anxiety, mood disorder, and other diagnosis were con-
trasted with adjustment disorder), gender (females were used as the
reference group), and mean-centered age. Finally, we determined
that the model fit better when the variances of the residuals,
VAR(εti) � 	t

2, were allowed to vary over time.

SPMM Analysis

The next step of the analyses involved fitting a series of SPMMs
to the data, increasing the number of latent classes as necessary. A
single summary indicator was used to indicate the termination
occasion: the log of the total number of sessions attended. Total
number of sessions attended is used as the single summary variable
with which to model the nonrandom missing data mechanism. We
use this single indicator because we expect that all of the important
information about missing data that is associated with an individ-
ual’s growth trajectory will be contained in the number of therapy
sessions that an individual attended.6 Total number of sessions
attended ranged from three to 27 for the sample and was heavily
skewed right. Log number of sessions was distributed with M �
2.05, Mdn � 2.08, SD � 0.60, skew � .07, and kurtosis � 
.74.
Thus, by using the log-transformed summary indicator, we were
able to assume conditional normality and reduce the computational
burden of the model.

SPMMs were estimated with and without predictors of the
OQ-45 trajectories. The former is called a conditional model and
the latter is called an unconditional model. One- through four-class
SPMMs were fit to the data. A decision to stop adding classes was
made after small class proportions appeared in the four-class
model (i.e., the estimated class proportion, �k, was less than .05)
and because aggregate parameter estimates did not change sub-
stantially as more classes were added. Classes with small values
for �k tend to be unstable, greatly increasing standard errors of the
parameter estimates. Mplus Version 6 was used to estimate the
models, and the Model Constraints command was used to calculate
the aggregated intercept, slope, and variance component parameter

estimates so that standard errors (computed by the delta method)
would be output by the program. Growth factor and summary
indicator means and intercepts were free to vary across latent
classes; growth factor variances were fixed to equality across all
classes to speed convergence.7 Model syntax for a two-class model
is included in the Appendix.

Results

Figure 2 shows a descriptive depiction of psychological func-
tioning over time. Average observed OQ-45 scores decrease
quickly at first and then level off. The sample size at each time
point is indicated by the diameter of the bubble at that point. It is
important to recognize that sample-level mean change over time
will only accurately convey information about individual-level
rates of change if patients who leave therapy early change no more
rapidly than do those who do not leave early. Otherwise, the
sample that remains at later points in time will differ systemati-
cally from the larger sample at earlier points in time. In contrast,
Figure 3 plots average OQ-45 scores as a function of time sepa-
rately for patients who attended a total of three, five, seven, nine,
and 11 sessions. It is visually apparent that rate of change is
strongly linked with total number of sessions attended; Figure 2
portrays a misleading characterization about the shape individual
change during therapy.

Unconditional Models for Growth: Testing Sensitivity
to the MAR Assumption

It is useful to assess model fit in a conventional growth model
before moving on to a sensitivity analysis for the assumption of
random missingness. However, it must be stressed that conven-
tional model fit criteria for evaluating LCMs are insensitive to the
nature of missingness (Enders, 2011), that is, the criteria may
suggest that a model assuming a MAR mechanism fits data well
even when the data are not truly MAR. This point is supported by
subsequent SPMM analyses.

The unconditional LCM has an acceptable fit, �2(73) �
1,153.79, p � .001, comparative fit index (CFI) � .95, Tucker–
Lewis index (TLI) � .95, root-mean-square error of approximation
(RMSEA) 90% confidence interval (CI) [.05, .06]. Parameter
estimates from the unconditional models are shown on the left side
of Table 1. This model suggests that, on average, people were
estimated to have an OQ-45 score of 71.37 (standard error [SE] �
0.37) upon starting psychotherapy treatment. This is well above
the 63-point threshold on the OQ-45 for clinically significant
symptoms. However, there is substantial individual variability at
baseline. The LCM-implied intercept variance (�00) is estimated to
be 445.05 (SE � 10.40; a standard deviation of about 21 points on
the OQ-45 Scale). The model for change was log-linear; for the
average individual, each log session was estimated to be linked
with an improvement of 
7.81 points (SE � 0.23) on the OQ-45

6 Failure to include all of the relevant information about missingness into
the model will result in incomplete elimination of parameter bias.

7 It is not recommended to fix growth factor variances to zero. This
practice greatly increases the number of classes needed to recover the
interindividual variation in growth that exists in the sample (Sterba, Bal-
dasaro, & Bauer, 2012).
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symptom severity score. There was also substantial heterogeneity
in the slope (�11 � 
80.13) and a significant negative covariance
between the intercept and slope (�01 � 
61.33)—individuals who
began psychotherapy with worse symptoms tended to improve
more quickly than did those with less severe symptoms.

We next estimated an unconditional SPMM. Indices used to
judge fit for standard structural equation models are generally not
valid for mixture models, so other metrics must be used for model
comparisons (McLachlan & Peel, 2000). The Bayesian informa-
tion criterion (BIC; Schwarz, 1978) works well in the context of
indirect applications of mixture models such as the SPMM because
it favors more parsimonious models than the Akaike information
criterion (AIC; Akaike, 1977) does, and it is therefore statistically
more efficient than the AIC. The Lo–Mendell–Rubin (Lo, Men-
dell, & Rubin, 2001) and the bootstrap likelihood ratio tests
(McLachlan, 1987) are good alternatives to the BIC; however,
these approaches are more computationally intensive than the BIC.
Because indirect applications of mixture modeling do not attempt
to identify an objective true number of latent classes, model
parsimony is the objective and the BIC has been shown to accom-
plish this objective well (Gottfredson et al., in press; Morgan-
Lopez & Fals-Stewart, 2008).

To test parameter sensitivity to the assumption that the number
of sessions attended was independent from individual growth
trajectories, we compared a one-class SPMM with a two-class
SPMM. A one-class SPMM implies independence between miss-
ing data and growth parameters and is essentially equivalent to an

LCM. The BIC was lower for the two-class SPMM (236,784 for
the one-class model vs. 235,931 for the two-class model). Al-
though this is not a formal statistical test, this finding is suggestive
of a nonrandom missing data mechanism. Because the two-class
SPMM fit the data better than a one-class model, a three-class
SPMM was then estimated. The three-class model had a lower BIC
value than the two-class model did (235,633). The three-class
solution was favored over the four-class solution because the
four-class model contained a very small, unstable, latent class.
Aggregate parameter estimates for the unconditional three-class
SPMM are shown in the center of Table 1.

Because the purpose of mixture models is to recover the empir-
ical distribution as closely as possible, information criteria often
indicate that more classes are superior to fewer classes (Bauer,
2007; Bauer & Curran, 2003). Even when the conservative BIC
metric is used in model selection, there are several features of the
data that might lead to the extraction of more than one latent class.
Outside of nonrandom missingness, plausible causes for extracting
extra latent classes include violation of the assumption of normal-
ity for the repeated measures or a misspecified trajectory model.
Even though care was taken to model the shape of the trajectory
appropriately and the repeated measures were approximately nor-
mal, Bauer and Curran (2003) have shown that very slight depar-
tures from model assumptions can lead to the extraction of addi-
tional latent classes. For this reason, it is important to inspect
parameter estimates for evidence of meaningful change when
missing data indicators are included as part of an SPMM, rather

Figure 2. Psychological symptoms (measured with the Outcome Questionnaire–45) as a function of time in
psychotherapy. Bubble width and grayscale gradient indicates sample size at each time point.
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than relying on the number of classes (i.e., one class versus more
than one class) alone as evidence for nonrandom missingness.
Extracting unnecessary classes will not lead to parameter bias in
the fixed effects but it will lead to somewhat inflated standard
errors, confidence intervals that are too wide, and a concomitant
reduction in power. Furthermore, Gottfredson et al. (in press)
showed via simulation that variance component estimates tend to
be more upwardly biased as the number of classes increases
unnecessarily.

One way to quantify the degree of parameter sensitivity to the
assumption of random missingness is percentage of change in the
parameter estimates. Percentage of change is calculated by sub-
tracting the SPMM-implied estimate from the LCM-implied esti-
mate and dividing this quantity by the LCM-implied estimate. The
absolute value of this result is multiplied by 100. Because percent-
age of change is highly dependent on the magnitude of the effect,
Collins, Schafer, and Kam (2001) introduced an alternative metric.
Their measure, which we call the CSK index, can be computed in
our study by subtracting the SPMM estimate from the LCM
estimate, dividing by the standard error of the LCM estimate, and
multiplying this value by 100. Collins et al. indicated that a CSK
value of �/
 40% is problematic.8 Both percentage of change and
CSK are shown on the right side of Table 1. Data visualization is
another method for evaluating growth parameter sensitivity to the
MAR assumption. A comparison of LCM-implied average trajec-
tories with SPMM-implied average trajectories is shown in Figure
4. Although the difference between the two implied trajectories is
slight, the difference between the symptom scores at later sessions
is not trivial.

As expected, most of the parameter sensitivity occurred in the
estimate of the slope (CSK � 226.09, a 6.66% change). When
dropout patterns are simultaneously modeled with the growth
trajectory, the average rate of change becomes larger in magnitude
(the estimate of �1 changes from 
7.81 to 
8.33). In other words,
the assumption that therapy termination is ignorable leads to a
presumed underestimate of the average rate of change. This occurs
because people who leave the study earliest because of rapid
improvement provide less information about the shape of change
than do people who continue in psychotherapy longer.

Assessing the Impact of Covariates on Missing Data
Assumptions

The MAR assumption implies that missing data are randomly
missing conditional on observed data (Schafer, 1997). Thus, it
follows that including more covariates into a model may help to
explain missing data patterns, thereby approximating an MAR
mechanism. Indeed, Collins et al. (2001) showed that it is best

8 For our purposes, we avoid the term standardized bias that Collins et
al. (2001) used for their metric. Whereas Collins et al. (2001) used this
measure to contrast simulated data with known parameter values, we use
the CSK with real data for which the true parameter values are unknown.
It would be incorrect to claim that SPMM estimates are the true parameter
values against which LCM estimates should be judged. Even though
SPMM estimates tend to be less biased than LCM estimates in the presence
of non–randomly missing data, both sets of estimates are subject to
sampling variability, error of measurement, and model misspecification
that is unrelated to missing data assumptions.

Figure 3. Average Outcome Questionnaire–45 (OQ-45) scores by session as a function of total number of
sessions attended.
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to use an inclusive strategy when adding covariates to a model,
as this tends to decrease parameter bias. The logic behind
multiple imputation is similar: Even if predictors are not nec-
essarily of interest for the research question, they may be useful
for predicting missing values. We encourage the incorporation
of predictors that have the potential to explain missing data
patterns. Of course, researchers may not know the cause of their
missing data or they may not have measured the variables that
are responsible for missingness. In the case of missingness that
is presumed to depend on individual differences in growth, the
cause of missingness is inherently latent and unmeasured. How-
ever, including measured covariates that explain some of the
variance in growth may reduce the severity of violations to the
MAR assumption.

In the next set of analyses, we added demographic predictors
as well as clinical diagnosis in an effort to better explain growth

trajectories but also in an effort to make the MAR assumption
more plausible by conditioning on these measured variables.
Results for the conditional LCM are shown on the left side of
Table 2. The conditional LCM had acceptable fit, �2(123) �
1,326.96, p � .001, CFI � .95, TLI � .95, RMSEA 90% CI
[.04, .05]. Diagnosis was strongly linked with the baseline
OQ-45 scores: Individuals with mood disorders were estimated
to be substantially worse at baseline than individuals with
adjustment disorders ( � 18.01, SE � 0.96), and people with
anxiety disorders were worse than people with adjustment dis-
orders ( � 6.81, SE � 1.38). Women had higher baseline
symptom severity scores than men ( � 4.10, SE � 0.63).
People with mood disorders, compared with those who had
adjustment disorders, tended to have steeper trajectories of
improvement ( � 
3.33, SE � 0.45). Older age was related to
slower recovery ( � 0.08, SE � 0.04).

In line with the idea that covariates reduce MNAR severity,
the two-class SPMM fit better than a one-class or three-class
model according to the BIC (one-class BIC � 236,282.09;
two-class BIC � 235,448.91; three-class BIC � 235,157.74).
Parameter estimates are shown in the center of Table 2 and
model comparison statistics (percentage of change and CSK)
are shown on the right side of Table 2. It is noteworthy that the
degree of parameter sensitivity in the slope parameter estimate
(quantified using CSK) has been greatly reduced by the inclu-
sion of covariates. CSK for the slope has changed from 226.09
(a 6.66% change from the LCM estimate) to 110.00 (a 6.50%
change from the LCM estimate). Because the covariates that
were included in the model explain a portion of the variance in
individual trajectories, these variables are also useful for help-
ing to explain termination timing.

The most important point of this analysis is that a small degree
of parameter sensitivity remains in the conditional LCM estimate
of the slope, even after including the important covariates about
diagnostic status in model. That is, even though we used an
inclusive strategy with a full information maximum likelihood
estimator by incorporating diagnostic information and relevant
background variables into the LCM, significant unexplained de-
pendence remains between psychological functioning and termi-
nation. Although it is not known for certain which of these models

Table 1
Comparison of Unconditional Models: Assessing Sensitivity to the Missing at Random Assumption

Measure

LCM SPMM Parameter sensitivity

Estimate SE Estimate SE % Change CSK

Fixed effects

Intercept 71.37��� .37 71.60��� .37 .32 
62.13
Slope (time logged) 
7.81��� .23 
8.33��� .24 6.66 226.09

Variance components

Intercept variance 445.05��� 9.47 445.09��� 9.45 .01 
.42
Slope variance 80.13��� 2.76 78.97��� 2.70 1.45 42.03
Covariance 
61.33��� 4.34 
61.10��� 4.31 .38 
5.30

Note. Residual variances do not appear on the table. Values range from 74.80 at baseline to 155.66 at last time point for the LCM and from 76.27 at
baseline to 155.47 at last time point for the SPMM. CSK � Collins–Schafer–Kam index of model sensitivity; LCM � latent curve model; SPMM � shared
parameter mixture model.
��� p � .001.

Figure 4. Comparison of average unconditional model-implied trajecto-
ries for the latent curve model (LCM) versus the shared parameter mixture
model (SPMM).
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is more correct, we view the SPMM as being theoretically more
plausible than the LCM.

Discussion

Projections about expected length and course of voluntary treat-
ment programs are useful for practitioners for a variety of reasons.
However, with voluntary treatment comes dropout or intermittent
attendance. Patient adherence to treatment and timing of termina-
tion is intrinsically linked with the psychological or behavioral
phenomenon that is being addressed by the treatment. Because
many standard growth models rely on the assumption that the
process underlying missing data is unrelated to the outcome of
interest (after accounting for all relevant covariates), the estimates
generated by these models are not always suitable for describing
change in studies that permit dropout or intermittently missing
data, including naturalistic treatment studies, randomized con-
trolled trials, or developmental studies. Because there is no test to
determine whether missing data are MAR, it is essential to conduct
a sensitivity analysis whenever a nonrandom missingness mecha-
nism is plausible.

In this article, we showed how the SPMM could be used to
directly assess the sensitivity of traditional growth model results to
the assumption of random dropout.9 In our analysis, we found
evidence to suggest that individual trajectories of psychological
functioning over time are related to time spent in therapy. Further,
we used the SPMM to obtain growth estimates that do not depend
on the MAR assumption. A comparison of the LCM-implied
slopes with SPMM-implied slopes showed that the growth param-

eters are sensitive to the assumption that the total number of
sessions attended is unrelated to individual growth trajectories.
Incorporating covariates into the model helped to reduce this
parameter sensitivity to some degree, but differences in the pa-
rameter estimates generated by the two models were still nontriv-
ial. Using the SPMM, we conclude that the average individual
recovers from negative psychological symptoms more quickly
than would be suggested by standard growth models.

In our data set, we relied on a single indicator of missingness or
dropout (i.e., number of sessions attended) to inform growth pa-
rameter estimates. In a more complicated setting, such as when
patients skip appointments or reenroll in therapy after a hiatus, it
is still possible to use an SPMM and model these intermittent
missingness patterns as well as dropout. This would involve mod-
eling more than one indicator of missingness; for example, one
might include number of sessions attended plus average time
between sessions, or an indicator of reenrollment. In other words,
it is essential for the analyst to carefully consider the suspected
missingness mechanism and include missingness indicators that
will adequately inform growth parameters.

Limitations

Unfortunately, there is no method to determine whether miss-
ingness is truly nonignorable. However, we did evaluate several

9 Although we modeled dropout, these models are equally (if not more)
useful for modeling intermittent missingness (Gottfredson, 2011).

Table 2
Conditional Models: Assessing Sensitivity to the Missing at Random Assumption Conditional on Covariates

LCM SPMM Parameter sensitivity

Estimate SE Estimate SE % change CSK

Fixed effects

Intercept 63.23��� 0.82 63.56��� 0.82 0.52 
40.24
Slope (time-logged) 
6.77��� 0.40 
7.21��� 0.39 6.50 110.00
Covariate effects on intercept

Anxiety 6.81��� 1.38 6.76��� 1.39 0.73 3.62
Mood 18.01��� 0.96 17.84��� 0.97 1.44 27.08
Other disorder 1.29��� 0.99 1.21��� 1.00 6.20 8.08
Female 4.10��� 0.63 4.06��� 0.63 0.98 6.35
Age (centered) 0.07��� 0.09 0.06��� 0.09 14.29 11.11

Covariate effects on slope
Anxiety 
0.47��� 0.61 
0.55��� 0.58 17.02 13.11
Mood 
3.33��� 0.45 
3.49��� 0.44 4.80 35.56
Other disorder 0.82��� 0.39 0.74��� 0.39 9.76 20.51
Female 
0.59��� 0.37 
0.62��� 0.37 5.08 8.11
Age (centered) 0.08��� 0.04 0.08a�� 0.04 0 0

Variance components

Intercept variance 386.55��� 8.75 384.01��� 8.95 0.66 28.38
Slope variance 77.82��� 2.78 73.32��� 2.71 5.78 166.05
Covariance 
49.69��� 3.88 
52.26��� 3.79 5.17 67.81

Note. Adjustment disorders and males are the referent groups. Residual variances are not tabled. Values range from 73.39 at baseline to 156.57 at the last
time point for the LCM. Values range from 74.61 at baseline to 156.41 at the last time point for the SPMM. CSK � Collins–Schafer–Kam index of model
sensitivity; LCM � latent curve model; SPMM � shared parameter mixture model.
a The SPMM-implied point estimate and standard error appears identical to the LCM-implied point estimate and standard error due to rounding error. The
latter effect is statistically significant and the former is not.
� p � .05. ��� p � .001.
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sources of evidence that suggested the MAR assumption was
unlikely: (a) The idea that therapy termination would be uncorre-
lated with rate of improvement in psychological functioning
seemed implausible; (b) BIC values indicated that two- and three-
class solutions provided a better fit to the data than a one-class
solution; and (c) model-implied estimates for the slope differed
substantially as the number of latent classes increased, whereas
other parameter estimates were not affected by the addition of
latent classes. Each of these pieces of evidence is consistent with
our expectation that the decision to leave therapy is related to rate
of improvement. Simulation analyses reported in Gottfredson et al.
(in press) suggest that nonrandom missingness is strongly associ-
ated with the tendency of the BIC to support two or more latent
classes.

Whereas Gottfredson et al. (in press) found that SPMM-based
fixed effect estimates were always equal or superior to LCM-based
fixed effect estimates, they also found that SPMM-based variance
component estimates tend to be more biased than LCM-based
estimates, particularly when the MAR assumption is actually cor-
rect. Thus, we avoided interpreting the sensitivity of the variance
component estimates. Variance component estimates were quite
stable across the two models; however, the variance estimates for
the slope were somewhat smaller in the SPMM analysis. It is
difficult to know whether this discrepancy is a result of missing
data assumptions in the LCM or of model approximation error in
the SPMM. When the fixed effect estimates do not differ between
the LCM and SPMM, we recommend interpretation of the LCM
both because the variance component estimates are more likely to
be trustworthy and because the LCM is a more parsimonious
model.

The SPMM technique is useful for circumstances in which
nonignorable missing data arise as a function of individual trajec-
tories (e.g., speed of improvement, baseline levels of functioning).
However, other causes for nonignorable missing data are conceiv-
able. For instance, a sudden and unexpected worsening of symp-
toms might require patient hospitalization and a new treatment
plan. In such a case, the SPMM will not be able to get leverage on
the sudden worsening of symptoms from the patient’s prior tra-
jectory. We advise researchers to consider whether this type of
missing data might exist. If so, it will be important to follow up
with patients to identify reasons for treatment termination so that
this information can be accounted for or to use another MNAR
model to conduct a sensitivity analysis. Enders (2011) described a
variety of options.

The archival data used in these analyses were drawn from a
sample of volunteers seeking therapy at a university counseling
center. Thus, the psychological functioning of participants may
have been less impaired than that which might be observed in a
community health setting. The reduced clinical severity of the
average client may have limited the range of the typical length of
therapy received by the participants in the sample. However, the
number of sessions provided by the psychologists and psychiatrists
was never limited and no cases were referred outside of the clinic.
In the case that the range of psychological functioning or number
of sessions attended was limited in our sample, this would reduce
the degree of nonrandom missingness that would be observed. This
is because patients with the longest treatment times and slowest
rate of change would be selected out of the sample. Thus, the
degree of parameter sensitivity due to potential nonrandom miss-

ingness that we observed in this analysis likely represents a lower
bound of what might be observed in other naturalistic clinical
settings.

Additional Research and Clinical Implications

Up to this point, we have detailed a number of important
implications for the analysis of data involving nonignorable
missing data. In addition, nonignorable missing data can impact
choices about timing of measurement in treatment studies and
can point to potentially important clinical processes in need of
study. For example, an implication for naturalistic psychother-
apy studies is that researchers must attend carefully to when
they choose to measure outcomes. In many, if not all, natural-
istic studies, outcomes are measured only when a participant is
in treatment. This is both practical (i.e., fairly inexpensive) and
reasonable (i.e., change is attended to during treatment). How-
ever, this measurement schedule also opens up the possibility of
nonignorable missing data due to the relationship between
change and termination. Thus, researchers could consider ob-
taining measurements independent of treatment over a fixed
time window (e.g., weekly for 4 months). Considering such
issues is critical for patient-focused research (Lambert, 2007;
Lutz, Martinovich, Howard, & Leon, 2002), which relies heav-
ily on data collected in naturalistic treatment settings. Of
course, randomized clinical trials are not immune to nonignor-
able missing data due to a relationship between dropout and rate
of change. Thus, researchers conducting clinical trials need to
carefully consider the reasons for missing data in their trials and
whether methods such as the SPMM should be implemented as
a sensitivity analysis.

Nonignorable missing data are not just a statistical nuisance
but may provide important clinical information. Indeed, missing
data are not ignorable, by definition, when the mechanism for
the missing data is systematic rather than random. The system-
atic reasons for the missing data can be substantively important
and understanding those mechanisms could improve theory and
practice. For example, the correlation between missing data and
rate of change can inform psychologists clinically about how
patients and therapist regulate the length of treatment. Barkham
et al. (2006) proposed what they called the good-enough level
model. The idea is that patients stay in therapy until they decide
they have achieved sufficient improvement, and then they ter-
minate. This model suggests that fixed doses of treatment for all
patients is not appropriate and is not a good use of resources.
The good-enough level model also challenges the long-held
conclusion in psychotherapy research that as the number of
sessions increases, the benefits of each additional session de-
creases (Howard, Kopta, Krause, & Orlinsky, 1986). Further-
more, understanding the systematic decision processes patients
go through when deciding whether to return to treatment is an
important area for researchers to study, as it could help clini-
cians in their treatment planning and monitoring.

Conclusion

We believe that the SPMM is a valuable tool for evaluating
the sensitivity of trajectory estimates to missing data and that its
application has the potential to improve clinical research on
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change over time. Sample Mplus syntax is provided in the
Appendix to facilitate the application of the SPMM.
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Appendix

Two-Class Shared Parameter Mixture Model (SPMM) With Covariates

TITLE: Two class SPMM with covariates
DATA: file=psychotherapy.dat;
VARIABLE:

! Variable names should be eight characters or less.

names are age minor single anx mood otherdx lognumvi total0-total11;

! Estimating two latent classes here.

classes=class(2);

! Missing data should be coded with ‘.’ in the data set.

missing=.;
ANALYSIS:

! Allows for missing data at later sessions.

coverage=0;

! 50 random starts. Top five iterate to full solution.

starts=50 5;
type=mixture;
MODEL:
%OVERALL%

! True for all classes.
! Factor loadings fixed for a log-linear growth model.

(Appendix continues)
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! Using standard piping syntax for growth models in Mplus.

i s | total0@0 total1@.6931 total2@1.0986 total3@1.3863
total4@1.6094 total5@1.7918 total6@1.9459 total7@2.0794
total8@2.1972 total9@2.3026 total10@2.3979 total11@2.4849;

! Item intercepts should be fixed to zero; latent factors imply item means

[total0-total11@0];

! Allows residual variances to be unconstrained over time.

total0-total11;

! Saving covariance parameters for the model constraints command by using () notation

i (varint);
s (varslp);
i with s (cov);

! [] indicates a mean or intercept

[i s ];
[lognumvi];

! Regressing latent growth factors and missing data indicator on demographic variables.

i on age minor single anx mood otherdx;
s on age minor single anx mood otherdx;
lognumvi on age minor single anx mood otherdx;

! Missing data indicator lognumvi is conditionally independent from the intercept and slope.

lognumvi with i@0;
lognumvi with s@0;

! Save to class proportion for Class#1. Need to do this for K-1 classes.

[Class#1] (logit1);

! Growth factor means vary by class, as does missing data indicator mean.
! Save the growth factor means for model constraints command.

%Class#1%
[i](ba1);
[s](bb1);
[lognumvi];
%Class#2%
[i](ba2);
[s](bb2);
[lognumvi];
MODEL CONSTRAINT:

! Create new variables based on parameter estimates that were saved earlier.

NEW(p1 p2 mba mbb va vb covab);

! Create estimated class proportions to weight within-class estimates.

p1 = exp(logit1)/(exp(logit1)+1);
p2 = 1-p1;

(Appendix continues)
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! Overall intercept and slope.

mba = (p1�ba1 + p2�ba2);
mbb = (p1�bb1 + p2�bb2);

! Overall growth factor variances and covariances.

va=p1�p2�(ba1-ba2)��2+varint;
vb=p1�p2�(bb1-bb2)��2+varslp;
covab=p1�p2�(ba1-ba2)�(bb1-bb2)+cov;

! Results based on model constraints can be found near the end of the Mplus output.
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Correction to Jerud et al. (2014)

In the article, “Changes in Emotion Regulation in Adults With and Without a History of Childhood
Abuse Following Posttraumatic Stress Disorder Treatment,” by Alissa B. Jerud, Lori A. Zoellner,
Larry D. Pruitt, and Norah C. Feeny (Journal of Consulting and Clinical Psychology, 2014, Vol. 82,
No. 4, pp. 721–730. doi:10.1037/a0036520), the first sentence in the third paragraph of the Method
section, “Approximately a quarter of participants reported CA as their index trauma (24%), and 65%
(n � 170) of the participants reported having a history of CA, defined as either CSA or child
physical abuse” should read “(n � 130)” instead of “(n � 170).”
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