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Introduction 

Why is it important to consider nonlinear models? 

• In the social and behavioral sciences, we often study change over time. 

• Longitudinal data analysis is often the most powerful method for answering 

these questions. 

• Trends over time often follow a nonlinear trajectory. 

 The “Monitoring the Future” project (Johnston, O’Malley and Bachman 

(2002) 

Problems engendered by ignoring nonlinearity: 

• By not modeling nonlinearity, the researcher is fitting an ipso facto misspecified 

model. 

• Ignoring the functional form can lead to biased inferences or limiting 

conclusions. 

The Latent Curve Model (LCM) 

The LCM model is a special case of the Confirmatory Factor Analysis (CFA) sub-

model within SEM. 

εη Θ+Λ= yY  

where the structure of the curve is determined by the values of Λy. 

 



Issues with Nonlinearity in LCM 

• Two Kinds of Nonlinearity: 

 Nonlinearity of form which refers to the nonlinearity of the trajectory 

function. 

 Nonlinearity in the parameters where at least one parameter is a function 

of another. 

• It is the second type of nonlinearity that is problematic for LCM. In LCM, the 

parameters must enter the model linearly. Thus, LCM does not transition 

directly from the linear to the nonlinear model. 

• Nonlinearity is often modeled using polynomials, because the polynomial family 

of functions is linear in the parameters (additive): 
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• The polynomials are fit by assigning values to Λ (see ΛQ & ΛC respectively). 
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Three approaches to nonlinear modeling in LCM 

The Fully Latent approach (McArdle 1988, 1989; Meredith & Tisak 1990): 

• Allows some loadings (λ22 - λ52) to be freely estimated (see ΛFL).  

• Estimates a latent intercept and a latent "shape" parameter. 

The Conditionally Linear approach (Blozis & Cudeck 1999; Cudeck 1996; du Toit & 

Cudeck 2001): 

• Puts constraints on ΛCL (shown below for the monomolecular function). 

• Estimates a latent intercept and slope with a fixed growth parameter. 

The Linearization approach (Browne 1993; Browne & du Toit 1991 ) : 

• Puts constraints on ΛTS (shown below for the monomolecular function). 

• Estimates three latent factors. 
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Motivation of Project 

• Because all of these approaches are approximations of the nonlinear 

function, how well do they work in practice? 



Method 

Simulation Design 

We utilized Paxton, et al. (2001) as a guide. 

The Generating Function (from du Toit & Cudeck 2001) 
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where: β0 = 20 (φ11 = .25) 

β1 = 60 (φ22 = .0625) 

β2 = .5 (φ33 = .01) or (φ33 = 0) in the 'fixed-gamma' condition. 

Θε = .25 

Conditions 

• Type of Modeling Approach (quadratic, cubic, fully latent, conditionally linear or 

linearized by Taylor expansion.). 

• Whether β2 was a fixed or random component. 

• There were 1000 replications per condition 

 

Results 

Table 1: Schwartz's Bayesian Criterion and Percent Improper Solutions for Each 

Modeling Method 
 
Model Random Effects Fixed β2  
 BIC Improper BIC Improper 
Quadratic 8251.50 100% 7974.06 100% 
Cubic 838.06 0% 577.17 100% 
Fully Latent 6854.03 0% -100.33 0.1% 
Conditionally Linear 6839.29 0% -118.02 0.1% 
Linearization 1525.37 0% 881.49 100% 
 



Conclusions 

1. Nonlinearity of functional form and particularly in the parameters is an issue that 

researchers in the social and behavioral sciences must address. 

2. LCM cannot estimate complex nonlinear functions directly, but there are four 

methods for modeling nonlinearity (polynomial, fully latent, conditionally linear 

and linearized models). 

3. Comparing the five different estimating models that were used we found: 

• The quadratic is always inappropriate. 

• Surprisingly, the Cubic model fits the best in the fully random condition. 

• Only the conditionally linear and the fully latent gave proper solutions in 

the fixed β2 condition. 

4. Ultimately, because there is no nesting among the models, the choice of model is 

a philosophical decision that places the responsibility upon the researcher to find 

congruence between the theoretical model of interest and the statistical 

model used to analyze the data. Therefore, the interpretation of the 

parameters of the models is of the utmost interest to the applied researcher. 



Interpretation of Parameters 

Quadratic & Cubic Models 

• Loadings fixed, so there is no interpretation of Λ. 

• β0: initial value at time = 0. 

• β1: rate of change per unit time. 

• β2: rate of change in rate of change per unit time. 

• β3: rate of change in the rate of change of the rate of change per unit time. 

Fully Latent Model 

• Interpret the free loadings (λ22 - λ52) as proportional change during the time 

period. 

• β0: initial value at time = 0. 

• β1: overall change during time period. 

Conditionally Linear 

• β0: initial value at time = 0. 

• β1: potential change during time period. 

• β2: exponential growth rate. 

Linearization Model 

• β0: initial value at time = 0. 

• β1: potential change during the time period. 

• β2: exponential rate of growth. 

 


