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Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlin-

earity between latent variables have the advantage of recovering global relationships of unknown

functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural

equation models where latent components are estimated in the service of more flexibly recovering

characteristics of the latent aggregate regression function. This article develops and evaluates delta

method and parametric bootstrap approaches for obtaining approximate confidence intervals for

Bauer’s semiparametric approach to modeling latent nonlinear functions. Coverage rates of these

approximate point-wise confidence intervals or nonsimultaneous confidence bands are evaluated

by Monte Carlo and recommendations for their use are suggested.

Keywords: confidence interval, delta method, parametric bootstrap, structural equation mixture

model, nonlinear

Structural equation models are commonly used in the social sciences to describe and test for

relationships among latent variables. Although statistical theory for structural equation modeling

(SEM) is grounded in linear structural equations, the recognition that nonlinear models might

more accurately represent reality has motivated the development of methods for analyzing

nonlinear structural equation models (e.g., see Schumacker & Marcoulides, 1998). Historically,

parametric approaches to modeling nonlinearity were the first to be proposed (e.g., Jaccard &

Wan, 1995; Jöreskog & Yang, 1996; Kenny & Judd, 1984; Mooijaart & Bentler, 1986; Ping,

1996) and there remains much continued interest and development in these methods (e.g.,

Kelava, Moosbrugger, Dimitruk, & Schermelleh-Engel, 2008; Klein & Moosbrugger, 2000;

Klein & Muthén, 2007; Lee & Zhu, 2000; Marsh, Wen, & Hau, 2004). Parametric models

explicitly impose some functional form between latent predictor and outcome although the

true shape of this function is typically unknown.
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538 PEK, LOSARDO, BAUER

More recently, a semiparametric approach to modeling nonlinear relations between latent

variables was proposed by Bauer (2005) that involves fitting a structural equation mixture model

(SEMM) to the data (Arminger & Stein, 1997; Arminger, Stein, & Wittenberg, 1999; Dolan

& van der Maas, 1998; Jedidi, Jagpal, & DeSarbo, 1997a, b; B. O. Muthén, 2001). To date,

most interest in SEMMs has centered on direct applications of the model for which the goal

is to discern population heterogeneity. In contrast, Bauer’s (2005) application of SEMM falls

into the indirect category described by Titterington, Smith, and Makov (1985) where mixing

components are used as a statistical expedience to more flexibly capture the characteristics of

the aggregate population as a whole. In particular, a weighted sum of locally linear within-

component relationships is used to estimate the globally nonlinear function. Unlike many of

its parametric counterparts, using SEMMs to model nonlinear relationships between latent

variables has the advantage of recovering global relationships of unknown functional form

without assuming multivariate normally distributed latent variables. Instead, the latent variable

distributions are approximated by a mixture of normal distributions that can flexibly assume

a wide variety of shapes and the global regression curve is a nonlinear function of the model

parameters. As such, no single parameter can be tested to evaluate this nonlinear form as a

whole. To enable inference about the function, we propose here two methods for computing

approximate point-wise standard errors and confidence intervals or nonsimultaneous confidence

bands.

We begin by outlining Bauer’s (2005) method of modeling nonlinear latent variable rela-

tionships. Next, we describe the delta method and parametric bootstrap resampling approaches

to obtaining confidence intervals for the nonlinear function. The coverage rates of these

approximate confidence intervals are then evaluated by Monte Carlo for two exemplar functions.

We conclude with recommendations for the use of these confidence intervals in practice.

MODEL SPECIFICATION

The SEMM is an extension of the standard structural equation model. To establish notation

and facilitate expression of the SEMM, the linear structural equation model is described first.

Without loss of generality, the models are presented using one latent predictor ˜1 and one latent

outcome ˜2. The following developments remain applicable to evaluating bivariate relationships

embedded in more complex models.

Linear Structural Equation Model

The measurement model relating continuous observed measures to the latent factors for each

individual i is given as

y1i D v1 C œ1˜1i C ©1i

y2i D v2 C œ2˜2i C ©2i ;
(1)

where y1 and y2 are the vectors of observed variables measuring the latent predictor and

outcome, respectively. Intercepts and slopes (loadings) for the regression of the observed
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CONFIDENCE INTERVALS FOR NONLINEAR RELATIONS AMONG LATENT VARIABLES 539

variables onto the latent variables are contained in the vectors v and œ, respectively, with

subscripts indicating the referent observed variables. The residuals ©1 and ©2 have a joint zero

mean vector and covariance matrix ‚. Typically, ‚ is constrained to be diagonal, reflecting

the assumption that the observed variables are independent, after conditioning on the latent

variables.

The latent variable model for individual i is given by

˜1i D ’1 C —1i

˜2i D ’2 C “21˜1i C —2i :
(2)

The latent predictor ˜1 has mean ’1 and variance VAR.—1i/ D §11. Similarly, the latent outcome

˜2 has intercept ’2, slope “21, and residual variance VAR.—2i / D §22. Further, —1 and —2 are

assumed to be independent of each other and of ©1 and ©2.

Equations 1 and 2 imply specific mean and covariance structures for the vector of observed

variables y designated as �.™/ and †.™/, respectively, with ™ representing the vector of model

parameters (Bollen, 1989). Assuming that all residuals are normally distributed, the joint

marginal probability density function (PDF) is multivariate normal ¥ŒyI �.™/; †.™/�, which

provides the basis for maximum likelihood (ML) estimation of the parameters. The function

¥.:/ denotes the normal PDF.

Semiparametric Nonlinear Effects via Finite Mixture Structural Equation Model

The SEMM assumes that the joint distribution of y can be approximated by a mixture of

K multivariate normal distributions, each parameterized as a linear structural equation model.

Each component distribution is usually referred to as a latent class. Let P.k/ denote the mixing

probability for class k D 1; 2; : : : ; K with the constraint that
PK

kD1 P.k/ D 1. It is assumed

that the structural equation model specified for each class has the same form as the measurement

model of Equation 1 and this measurement model is constrained to be strictly invariant over

latent classes such that the latent variables are equivalently defined for all individuals in the

population (Meredith, 1993). Only parameters in Equation 2 must differ across latent classes:

˜1i D ’1k C —1ki

˜2i D ’2k C “21k˜1i C —2ki ;
(3)

as indicated by the subscript k. Within class k, the mean and variance of ˜1 are ’1k and

VAR.—1ki / D §11k, respectively. The intercept, slope, and residual variance for the linear

regression of ˜2 onto ˜1 are ’2k, “21k, and VAR.—2ki / D §22k. Note that §11k and §22k

can be optionally constrained to be equivalent over classes.

From Equation 3, the expected value of the latent outcome within class k is

Ek Œ˜2j˜1� D ’2k C “21k˜1 (4)

where the relationship between the latent variables is locally linear within each specific class.

The potentially nonlinear global relationship between the latent variables is obtained by taking
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540 PEK, LOSARDO, BAUER

the expected value across components. The resulting expression aggregates across the locally

linear relationships using the mixing probabilities as smoothing weights:

EŒ˜2j˜1� D

K
X

kD1

P.kj˜1/Ek Œ˜2j˜1� (5)

where

P.kj˜1/ D
P.k/¥k.˜1I ’1k; §11k/

K
X

kD1

P.k/¥k .˜1I ’1k; §11k/

(6)

is the conditional probability of class membership at a given value of the latent predictor.

In contrast to parametric approaches to modeling nonlinear effects, wherein a single param-

eter can be tested to evaluate the nonlinear trend, the SEMM approach determines nonlinearity

from a function of parameters as in Equation 5. In this context, no single parameter can be

tested to permit statistical inferences on the function as a whole. Instead, the nonlinearity can

be evaluated by obtaining confidence intervals across the range of the latent predictor.

APPROXIMATE CONFIDENCE INTERVALS

Approximate point-wise confidence intervals or nonsimultaneous confidence bands for the

global nonlinear function (Equation 5) can be constructed via the analytical delta method or the

empirical bootstrap. With the latter approach, the empirical distribution of the global function

can be obtained by nonparametric or parametric forms of the bootstrap. Obtaining reliable

SEMM estimates is computationally intensive and prone to problems of nonconvergence,

rendering the nonparametric bootstrap cumbersome as SEMMs need to be fit to every bootstrap

sample. Hence, we consider only a parametric bootstrapping procedure here where a single

SEMM is fit to the sample data. We describe the delta method and parametric bootstrap later

in turn.

Delta Method

The delta method provides approximate first and second order moments for nonlinear func-

tions of asymptotically normally distributed estimates. In this instance, the aggregate function

(Equation 5) is a nonlinear expression of multiple parameters and can be linearized using a

first order Taylor series expansion:

EŒ˜2j˜1�. O™/ � EŒ˜2j˜1�.™0/ C . O™ � ™0/EŒ˜2j˜1�
0.™0/; (7)

where O™ is the vector of parameter estimates for the K classes, ™0 is the unknown vector of

true parameter values, and EŒ˜2j˜1�0.™0/ is the vector of first derivatives of Equation 5 taken
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CONFIDENCE INTERVALS FOR NONLINEAR RELATIONS AMONG LATENT VARIABLES 541

with respect to each parameter. The variance of Equation 7 at each specific value of ˜1 can be

constructed by the following expression:

OVAR.EŒ˜2j˜1�. O™// � EŒ˜2j˜1�0.™0/jT
™0DO™

OVAR. O™/EŒ˜2j˜1�0.™0/j™0DO™
: (8)

Hence, the approximate variance of the aggregate function (Equation 5) is obtained by pre-

and post-multiplying the estimated asymptotic covariance matrix of the SEMM ML estimates
OVAR. O™/ by the vector of first derivatives of Equation 7 evaluated at the model implied estimates

O™. The first derivatives of Equation 7 for K classes are given in the Appendix.

By assuming approximate normality, point-wise confidence bands can be constructed at a

desired error rate using the following expression:

EŒ˜2j˜1�. O™/ ˙ z1�’=2Œ OVAR.EŒ˜2j˜1�. O™//�1=2 (9)

where z1�’=2 is the ’=2th quantile of the standard normal distribution. Approximate standard

errors associated with a specific value of ˜1 are directly obtained by taking the square root

of Equation 8. Confidence intervals constructed from Equation 9 are symmetric owing to the

symmetry of the normal distribution.

Parametric Bootstrap

The parametric bootstrap is a resampling algorithm such that bootstrap samples are drawn

from a parametric model for the data (Efron & Tibshirani, 1993). In the context of modeling

latent nonlinearity, the SEMM model defined by Equation 5 is the parametric model of

interest. Maximum likelihood estimates of these model parameters can be assumed to follow

a multivariate normal distribution:

O™ � N Œ™0; VAR. O™/� (10)

where O™ remains the vector of ML estimates, ™0 is the vector of unknown true parameter

values, and VAR. O™/ is the covariance matrix of the estimates. A chosen number of B bootstrap

samples are randomly drawn from the parametric estimate of the population defined as:

O™b � N Œ O™; OVAR. O™/�: (11)

The bootstrapped vector of parameters for sample b, O™b is assumed to follow a multivariate

normal distribution with mean O™ and estimated covariance OVAR. O™/, where b D 1; 2; : : : ; B .

These B bootstrapped values are then used to obtain B estimates of the nonlinear global

regression function (Equation 5). These B bootstrapped replicates then serve to estimate

the distribution of the global regression. At some desired error rate ’, the lower and upper

confidence limits for the regression function at a specific value of the latent predictor ˜1 are

defined as the Œ.’=2/100 B�th and Œ.1 � ’=2/100 B]th ordered value of the bootstrapped

empirical distribution.

One concern with using the parametric bootstrap is that parameter estimates derived from

small samples tend to lack precision and variance estimates tend to be nonnormally distributed
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542 PEK, LOSARDO, BAUER

and positively skewed. In the context of bootstrapping SEMM model parameters, inadmis-

sible values associated with the K latent predictor variances §11k can occur via sampling

from Equation 11, especially in small samples. Specifically, a random draw may produce an

extremely small or negative value for §11k, which leads to improper bootstrapped estimates

of the nonlinear global function (Equation 5). Truncation or censoring of the distribution in

Equation 11 for §11k are two practical solutions to circumvent this problem. Pilot research we

conducted indicated that truncated values tend to conform better in distribution to the positive

skew inherent in variance estimates compared to censored values. Hence we opted to truncate

random draws of §11k at an arbitrary value of 0.05; values smaller than 0.05 tended to produce

inadmissible bootstrapped estimates. In the Monte Carlo evaluations to follow, we randomly

drew 1,500 random samples from Equation 11 and retained the first B D 1,000 bootstrapped

replicates where §11k > 0:05.

MONTE CARLO EVALUATIONS

To illustrate the performance of these approximate confidence intervals, data were generated for

a symmetric (quadratic) and asymmetric (exponential) nonlinear regression between two latent

variables for small (N D 250), moderate (N D 500), and large (N D 1,000) samples using SAS

9.2 (SAS Institute Inc., 2008). Each condition had 1,000 replications. The measurement model

of Equation 1 was used to generate data for every case where each latent variable was indicated

by six measured variables with means v1 D v2 D 06 and factor loadings œ1 D œ2 D 16. The

next two sections provide more detail on data generation for the quadratic and exponential

regressions, respectively.

Estimation of all models was carried out with Mplus 5.21 (L. K. Muthén & Muthén, 2007).

Initial starting values were obtained from averaging solutions from 50 replicates estimated

with 500 random starts each. From these initial values, 10 additional random perturbations were

taken for each replication to reduce the incidence of local solutions. Two-, three-, and four-class

models were fit to data from all conditions and results of the best fitting model based on the

Akaike Information Criterion (AIC) for the two nonlinear functions are presented. Simulation

studies conducted by Bauer, Baldasaro, and Gottfredson (in press) show that selecting the

number of classes by AIC results in less bias than the Bayesian Information Criterion (BIC) in

recovery of nonlinear functions. All confidence intervals in the following demonstration were

constructed to have a nominal 95% coverage rate.

Symmetric Nonlinear Regression

For the symmetric nonlinear function, the measurement model was specified with ©1i �

N.0; 1=3/ and ©2i � N.0; :083/ such that the latent variables explained 75% of the variance of

their respective measured variables. The latent variable regression was quadratic of the form

˜2i D 5 � :25˜2
1i C —2i ; (12)

where ˜1i � N.0; 1/ and —2i � N.0; :25/ such that 50% of the variance in ˜2 was explained

by ˜1.
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CONFIDENCE INTERVALS FOR NONLINEAR RELATIONS AMONG LATENT VARIABLES 543

Based on the AIC, the four-class model fit the quadratic data best. Figure 1 depicts the

approximate confidence intervals constructed around the estimated aggregate function for a

single replication .N D 500/. The delta method and bootstrapped confidence intervals are

similar across much of the range of the latent predictor. The confidence intervals exhibit

some slight departure from coincidence in the midrange of the latent predictor, partly due

to the asymmetry of the bootstrapped confidence intervals. For both methods, the confidence

intervals are wider at the tail ends of the latent predictor, implying less precision in the estimated

aggregate nonlinear function at extreme values of ˜1. This behavior is to be expected given

that ˜1 was simulated from a normal distribution such that there is less information in the tails.

Because the SEMM is applied as an approximation tool, the model is not literally correct

and some model error (bias) is to be expected, particularly in regions with little data. Figure 2

presents plots of absolute bias by sample size for 1,000 replications across the range of the

latent predictor. Given that there are few datum at the tails of the latent predictor, absolute bias

increases with more extreme values of the latent predictor, particularly at low sample size. It

can be expected that confidence intervals will similarly perform best within the midrange and

FIGURE 1 Confidence intervals of a single replication for the quadratic function .N D 500/.
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544 PEK, LOSARDO, BAUER

FIGURE 2 Absolute bias of quadratic regression across 1,000 replications.

worst at the tails of the distribution. Indeed, this is precisely the pattern observed in Figure 3,

which depicts coverage rates for the quadratic regression across 1,000 replications for the

delta method (top) and parametric bootstrap (bottom), respectively. Juxtaposing Figure 2 with

Figure 3, coverage rates for both types of confidence intervals tracked absolute bias regardless

of sample size. Comparatively, coverage for the bootstrapped confidence intervals mirrored

absolute bias more closely than the delta method. Tail-end coverage rates were poorer for the

bootstrap method compared to the delta method, whereas the opposite was true for midrange

values, owing to the delta method generally having wider intervals.

Coverage rates associated with the delta method confidence intervals were often larger than

95%. Consequently, the precision of the estimates will tend to be underestimated and associated

tests will be underpowered. The larger than ideal coverage rates reflect overestimation of the

standard errors via the delta method. The upward bias in the delta method standard error

estimates is shown in Figure 4, which presents the mean delta method standard errors against

the empirical standard error computed from 1,000 replicates for N D 500. The delta method

approximated standard errors were consistently larger than the empirical standard errors as

shown in Figure 4, resulting in the larger than nominal 95% coverage rates observed over

much of the range of ˜1 in Figure 3.

In contrast, the coverage of the bootstrapped confidence intervals largely maintained the

nominal error rate except for extreme values of the latent predictor. Coverage rates for the

bootstrapped confidence intervals in Figure 3 varied somewhat by sample size. The moderate
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CONFIDENCE INTERVALS FOR NONLINEAR RELATIONS AMONG LATENT VARIABLES 545

FIGURE 3 Coverage rates of approximate confidence intervals for quadratic regression.

samples had the most ideal coverage and the small samples exhibited the most variability in

coverage across the range of ˜1. Contrary to intuition, at certain values of ˜1 the bootstrap

coverage rates for N D 1,000 dip below 95%, especially at the midrange of the latent predictor.

One possible explanation for the less than optimal coverage rates with large sample size is

potential violation of the parameter (or population) drift assumption (Stroud, 1972; Wald, 1943).

This assumption states that the systematic errors attributable to model misspecification are not

“too large” relative to sampling errors so as to ensure the existence of asymptotic distributions

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

or
th

 C
ar

ol
in

a 
- 

C
ha

pe
l H

ill
] 

at
 1

2:
51

 1
8 

Ja
nu

ar
y 

20
13

 



546 PEK, LOSARDO, BAUER

FIGURE 4 Empirical and delta method standard errors for quadratic regression across 1,000 replications

.N D 500/:

(Steiger, Shapiro, & Browne, 1985). By using SEMMs to approximate data generated from a

different population function, there will always be some model error. As seen in Figure 2, the

model error is relatively constant across different sample sizes, whereas sampling variability

necessarily decreases with larger samples. Hence, the ratio of model error against sampling error

might be disproportionately large in the context of N D 1,000. Violation of the parameter drift

assumption may thus have resulted in biased sampling variance estimates.1 As a consequence,

confidence intervals constructed using these suboptimal model estimates tend to unreliably

capture the population value.

An alternative explanation centers on the truncation of randomly drawn latent predictor vari-

ance estimates §11k. Estimates of §11k have less precision when obtained from smaller sample

sizes, and random draws of these values from Equation 11 in smaller samples tend to result

in more inadmissible values. The distribution in Equation 11 thus requires greater truncation

(for §11k) in smaller samples. Across the 1,000 replications truncation was implemented for

92, 8, and 0 replications for the small, moderate, and large sample conditions, respectively.

Therefore, the comparatively greater truncation of the §11k distribution at lower sample sizes

might have influenced the differential coverage observed in Figure 3.

1In the context of no model error, bootstrapped nonsimultaneous confidence bands were found to have approximate

coverage rates of 95% that improved with increasing sample size.
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CONFIDENCE INTERVALS FOR NONLINEAR RELATIONS AMONG LATENT VARIABLES 547

Asymmetric Nonlinear Regression

For the asymmetric nonlinear function, the errors expressed in Equation 1 were generated as

©1i � N.0; 1/ and ©2i � N.0; :25/ such that the latent variables explained 50% of the variance

of their respective measured variables. The latent variable model followed the exponential

function:

˜2i D 5 C :04Œ1 � exp.�1:5˜1i /� C —2i (13)

where ˜1i � N.0; 1/ and —2i � N.0; :12/.

The three-class model fit the exponential data best with class-invariant parameters based

on the AIC. Figure 5 plots the estimated asymmetric aggregate function and corresponding

confidence intervals for one replication of moderate sample size .N D 500/. For this single

replication the delta method confidence intervals are slightly wider at the negative tail of ˜1

and smaller in the midrange of the latent predictor compared to the bootstrapped confidence

intervals.

FIGURE 5 Confidence intervals of a single replication for an exponential function .N D 500/.
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548 PEK, LOSARDO, BAUER

A plot of the absolute bias across 1,000 replications by sample size is presented in Figure 6.

Similar to the quadratic function, absolute bias tended to increase at the tails of the latent

predictor due to data sparseness. In addition, absolute bias for the exponential function was

largest toward the negative tail of the latent predictor, where the rate of change in the function

is rapid. Given the asymmetric nature of the function, extrapolation of expected values to the

right is necessarily more accurate than to the left, producing the asymmetry in Figure 6.

The coverage rates of the confidence intervals are presented in Figure 7. The shape of the

coverage curves in Figure 7 reflects absolute bias in Figure 6. Consistent with results from the

symmetric function, coverage associated with the bootstrapped confidence intervals exhibited

more alignment with absolute bias than the delta method. Additionally, delta method coverage

rates were again often larger than 95%. These excessive coverage rates continue to reflect

overestimation of the sampling error as shown in Figure 8, which presents the mean delta

method standard errors and the empirical standard error computed from 1,000 replicates for

N D 500. Also consistent with the prior results, sample size did not moderate coverage rates

for the delta method under the asymmetric function, but did influence coverage rates for the

bootstrapped confidence intervals where the smallest sample size was associated with the most

ideal coverage. Again, violation of the parameter drift assumption or truncation of inadmissible

draws on the latent predictor variance estimates §11k may account for the effect of sample size

on bootstrapped confidence interval coverage rates for the asymmetric function. For 1,000

FIGURE 6 Absolute bias of exponential regression across 1,000 replications.
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CONFIDENCE INTERVALS FOR NONLINEAR RELATIONS AMONG LATENT VARIABLES 549

FIGURE 7 Coverage rates of approximate confidence intervals for exponential regression.

replications, truncation was conducted for 300, 58, and 8 replicates for the small, moderate,

and large sample conditions, respectively.

CONCLUSIONS AND RECOMMENDATIONS

The precision of nonlinear function estimates obtained from SEMMs can be adequately assessed

by approximate point-wise confidence intervals constructed via the delta method or parametric
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550 PEK, LOSARDO, BAUER

FIGURE 8 Empirical and delta method standard errors for exponential regression across 1,000 replications

.N D 500/.

bootstrap. Confidence intervals obtained from both methods displayed similar characteristics

across symmetric and asymmetric functions. Not surprisingly, both methods tended to generate

confidence limits with poor coverage at the tails of the latent predictor. This finding is expected

given the known bias of the model approximation in regions of sparse data.

Although delta method confidence intervals were somewhat less sensitive to bias, the delta

method standard errors consistently overestimated the true sampling error, resulting in coverage

rates higher than ideal over much of the range of the function. These confidence intervals

then tend to communicate greater estimate imprecision than appropriate, and will inflate the

probability of committing a Type II error if used for hypothesis testing. It is possible that

the first-order Taylor series provides an insufficiently accurate approximation of the nonlinear

function and that a second-order Taylor series approximation might generate more accurate

standard errors.

Comparatively, the bootstrapped confidence intervals displayed more ideal coverage rates but

tended to track bias closely; coverage rates tended to be liberal at specific ranges of the latent

predictor where there was considerable bias. Coverage of the bootstrapped confidence intervals

was moderated by sample size, counterintuitively performing best at lower sample sizes.

We have suggested that violation of the assumption of parameter drift (Stroud, 1972; Wald,

1943) may be responsible for this finding. Additionally, smaller sample sizes may more often

require truncation of inadmissible draws of variance estimates, which may influence coverage
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rates. It follows that careful model specification and consideration of sample size serves to

guard against potentially suboptimal coverage rates associated with parametric bootstrapped

confidence intervals. Choice of the number of latent classes to be modeled becomes key.

In general, bias is larger for models with a smaller number of latent classes, and retaining

more classes tends to reduce bias and improve bootstrapped confidence interval coverage rates.

However, a caveat exists in that taking a larger number of latent classes could result in greater

sampling variability, which manifests in wider bootstrapped confidence intervals.

The choice between using the delta method versus the parametric bootstrapped nonsimul-

taneous confidence bands would depend on analysts’ goals in that the two approaches differ

in their properties. The delta method confidence intervals were consistently conservative, and

tended to cover the population function at the expense of precision. Conversely, the bootstrapped

confidence intervals tend to preserve the nominal coverage rate but were sometimes too liberal

when bias was present. Although more “tuning” may be required to obtain confidence intervals

with desirable properties from the parametric bootstrap, these confidence intervals provide

better accuracy in drawing inferences compared to the delta method confidence intervals. In

practice, given relatively cheap computational power, the time taken to obtain confidence limits

is trivially different between the two approaches. Ultimately, even though performance differed

in terms of coverage rates, delta method and bootstrapped confidence intervals are highly

similar for any given replication (see Figures 1 and 5).

ACKNOWLEDGMENTS

We would like to thank Robert MacCallum and Michael Browne for helpful discussions

regarding the parameter drift assumption. This work was supported by the National Science

Foundation Award SES-0716555 to Daniel J. Bauer.

REFERENCES

Arminger, G., & Stein, P. (1997). Finite mixtures of covariance structure models with regressors. Sociological Methods

and Research, 26, 148–182.

Arminger, G., Stein, P., & Wittenberg, J. (1999). Mixtures of conditional mean and covariance structure models.

Psychometrika, 64, 475–494.

Bauer, D. J. (2005). A semiparametric approach to modeling nonlinear relations among latent variables. Structural

Equation Modeling, 12, 513–535.

Bauer, D. J., Baldasaro, R. E., & Gottfredson, N. C. (in press). Diagnostic procedures for detecting nonlinear

relationships between latent variables. Structural Equation Modeling.

Bollen, K. A. (1989). Structural equation models with latent variables. New York, NY: Wiley.

Dolan, C. V., & van der Maas, H. L. J. (1998). Fitting multivariate normal finite mixtures subject to structural equation

modeling. Psychometrika, 63, 227–253.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York, NY: Chapman & Hall.

Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors

using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117, 348–

357.

Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997a). Finite-mixture structural equation models for response-based

segmentation and unobserved heterogeneity. Marketing Science, 16, 39–59.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

or
th

 C
ar

ol
in

a 
- 

C
ha

pe
l H

ill
] 

at
 1

2:
51

 1
8 

Ja
nu

ar
y 

20
13

 



552 PEK, LOSARDO, BAUER

Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997b). STEMM: A general finite mixture structural equation model.

Journal of Classification, 14, 23–50.

Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction

effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and

techniques (pp. 57–88). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Kelava, A., Moosbrugger, H., Dimitruk, P., & Schermelleh-Engel, K. (2008). Multicollinearity and missing constraints:

A comparison of three approaches for the analysis of latent nonlinear effects. Methodology, 4, 51–66.

Kenny, D. A., & Judd, C. M. (1984). Estimating the non-linear and interactive effects of latent variables. Psychological

Bulletin, 96, 201–210.

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS

method. Psychometrika, 65, 457–474.

Klein, A. G., & Muthén, B. O. (2007). Quasi maximum likelihood estimation of structural equation models with

multiple interaction and quadratic effects. Multivariate Behavioral Research, 42, 647–673.

Lee, S. Y., & Zhu, H. T. (2000). Statistical analysis of nonlinear structural equation models with continuous and

polytomous data. British Journal of Mathematical and Statistical Psychology, 53, 209–232.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative

estimation strategies and indicator construction. Psychological Methods, 9, 275–300.

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525–543.

Mooijaart, A., & Bentler, R. (1986). Random polynomial factor analysis. In E. Diday, M. Jambu, L. Lebart, J. Pages,

& R. Tomassone (Eds.), Data analysis and informatics, IV: Proceedings of the fourth international symposium on

data analysis and informatics (pp. 241–250). North Holland, Amsterdam: Elsevier Science.

Muthén, B. O. (2001). Second-generation structural equation modeling with a combination of categorical and contin-

uous latent variables: New opportunities for latent class/latent growth modeling. In A. Sayer & L. Collins (Eds.),

New methods for the analysis of change (pp. 291–322). Washington, DC: American Psychological Association.

Muthén, B. O., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm.

Biometrics, 55, 463–469.

Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s guide (5th ed.). Los Angeles, CA: Author.

Ping, R. A. (1996). Latent variable interaction and quadratic effect estimation: A two-step technique using structural

equation analysis. Psychological Bulletin, 119, 166–175.

SAS Institute Inc. (2008). SAS® 9.2 Enhanced logging facilities. Cary, NC: Author.

Schumacker, R. E., & Marcoulides, G. A. (Eds.). (1998). Interaction and nonlinear effects in structural equation

models. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential chi-

square statistics. Psychometrika, 50, 253–264.

Stroud, T. W. (1972). Fixed alternatives and Wald’s formulation of the noncentral asymptotic behavior of the likelihood

ratio statistic. Annals of Mathematical Statistics, 43, 447–454.

Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions.

Chichester, UK: Wiley.

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is

large. Transactions of the American Mathematical Society, 54, 426–482.

APPENDIX

Following B. O. Muthén and Shedden (1999) and B. O. Muthén (2001), the class probabilities

are modeled by a multinomial logit regression model for unordered polytomous outcomes

where

P.k/ D
exp.ck/

K
X

k

exp.ck/

with cK D 0: (14)
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Here, these categorical latent variables ck are represented as mixture components. Substituting

Equation 14 into Equation 6 and simplifying, we have

P.kj˜1/ D
exp.ck/¥k

X

exp.ck/¥k

where ¥k denotes ¥k.˜1I ’1k; §11k/:

The derivatives for computing approximate confidence intervals via the delta method follow.

Let

D D

K
X

k

exp.ck/¥k :

The derivative for the intercept of ˜2 for class k is

@EŒ˜2j˜1�

@’2k

D
exp.ck/¥k

D
:

The derivative for the slope of ˜2 on ˜1 for class k is

@EŒ˜2j˜1�

@“21k

D
exp.ck/¥k˜1

D
:

The derivative for the logit for class k is

@EŒ˜2j˜1�

@ck

D
exp.ck/¥k

D2

8

<

:

K
X

j ¤k

exp.cj /¥j Œ’2k � ’2j � C Œ“21k � “21j �˜1

9

=

;

:

The derivative for the mean of ˜1 for class k is

@EŒ˜2j˜1�

@’1k

D
exp.ck/¥0

k

D2

8

<

:

K
X

j ¤k

exp.cj /¥j .Œ’2k � ’2j � C Œ“21k � “21j �˜1/

9

=

;

where

¥0
k D

@EŒ˜2j˜1�

@’1k

D ¥k

�

.˜1 � ’1k/

§11k

�

:

Finally, the derivative for the variance of ˜1 for class k is

@EŒ˜2j˜1�

@§11k

D
exp.ck/ Q¥k

D2

8

<

:

K
X

j ¤k

exp.cj /¥j .Œ’2k � ’2j � C Œ“21k � “21j �˜1/

9

=

;

where

Q¥k D
@EŒ˜2j˜1�

@§11k

D
¥k

2§11k

�

.˜1 � ’1k/2

§11k

� 1

�

:
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