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Recently, interest has grown in the use of instrumental variables (IVs) in estimating
factor analysis and latent variable models such as structural equations models. Bollen
(1996) suggested a two-stage least squares (2SLS) technique that makes use of model-
implied 1Vs in estimating the measurement and latent variable models. Model-implied
instrumental variables are the observed variables in the model that can serve as instru-
mental variables in a given equation. One difficulty inhibiting the practical use of
the 2SLS estimator is identifying the model-implied 1Vs. The authors provide a simple
procedure that identifies the model-implied IVs and a computer algorithm that can easily
be implemented to automate the selection of 1Vs for simultaneous equations, factor
analysis, and latent variable models.
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The maximum likelihood (ML) estimator is the dominant and
default estimator in software for structural equation modeling (SEM).
Under ideal conditions of no excess multivariate kurtosis and a cor-
rectly specified model, there are good reasons for this choice. Under
these conditions, the ML estimator is consistent and asymptotically
un-biased, efficient, and normally distributed. Furthermore, we can
consistently estimate its asymptotic standard errors (Browne 1984;
Bollen 1989). However, the ideals of no excess kurtosis or no errors
in model specification are more utopian than a description of the
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conditions researchers typically face. It is partly for this reason that
researchers are investigating limited-information instrumental vari-
able estimators for SEMs, some of which are asymptotically distribu-
tion free and more robust to specification errors (Bollen 2001; Cudeck
1991; Jennrich 1987). Testing for heteroscedasticity and functional
form (Pesaran and Taylor 1999), specification errors (Davidson and
Mackinnon 1993), and nonnested model testing (Oczkowski 2002)
are other reasons that interest has increased in instrumental variable
and two-stage least squares (2SLS) estimators. Another application
of these estimators is to provide starting values for iterative estima-
tion procedures. Instrumental variable estimators use instrumental
variables (IVs), observed variables that are uncorrelated with the
disturbances in an equation, to develop a consistent estimator of the
parameters in that equation.

Econometrics has a long history of using IVs in simultaneous
equations in which the observed variables are treated as if they
have no measurement error (e.g., Johnston 1972; Bowden and
Turkington 1984). To a lesser degree, econometricians have used IVs
to take account of measurement error in a subset of the variables.
Usually, these are presented in a single-equation case in which there
are single indicators for each substantive variable. Madansky (1964)
was perhaps the first to illustrate that researchers could apply IVs to
exploratory factor analysis models, a measurement model closer to
the applications of psychometricians than the uses of IVs in other
disciplines. Héagglund (1982) further developed IV estimators for
factor analysis under the assumptions of uncorrelated errors of
measurement. Bollen (1989:412, 1996) extended this to confirmatory
factor analysis models with correlated errors of measurement and
further developed 2SLS to apply to both the latent variable and
measurement models in SEM, with or without correlated errors across
some equations. The model-implied IVs in this approach are observed
variables in the model that satisfy the conditions for being I'Vs. The
two most important conditions are (1) the IV must correlate with
the endogenous variable that it will replace, and (2) the IV must not
correlate with the (composite) disturbance of the estimated equation.
Although the selection of the IVs is illustrated in examples (e.g.,
Bollen 1996; Higglund 1982), no article has presented a method to
automate the selection of I'Vs.
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We emphasize that the model-implied IVs are determined by the
specification of the model. An incorrect model can lead to an incorrect
selection of IVs. Thus, the selection of model-implied IVs depends
on the correctness of the model specification. Our aim is to describe
methods by which model-implied IVs are selected, given a specific
model structure. We are not providing a method that will lead to a
better specified model.

Our primary purpose is to describe an algorithm to automatically
select the model-implied I'Vs for an SEM. We first describe the algo-
rithm, then discuss how it may be implemented in common statistical
software. In the next section, we give the basis for the algorithm for
the selection of model-implied IVs. After this, we briefly describe
a series of programming procedures that can be used to implement
the algorithm in statistical software with matrix capabilities (e.g.,
GAUSS, SAS/IML, SPSS, or STATA). We follow with an illustration
of its implementation for an empirical SEM example and a general
summary. An SAS/IML macro that implements the algorithm is in
the appendix.

1Vs SELECTION ALGORITHM

We begin by presenting a modified version of Joreskog and Sorbom’s
(1993) LISREL notation for SEMs used in Bollen (2001). The latent
variable model is

n=o,+Byp+Té+¢, (D)

where 7 is a vector of the latent endogenous variables, o, is a vector
of the intercept terms for the equations, B is the matrix of coefficients
giving the impact of the latent endogenous variables on each other,
& is the vector of latent exogenous variables, I is the coefficient
matrix giving the effects of the latent exogenous variables on the latent
endogenous variables, and ¢ is the vector of disturbances. We assume
that E(¢) = 0, COV(§', &) = 0, and that (I — B) is nonsingular.
The two equations for the measurement model are

y=oa,+An+e, )
Xx=o,+ A&+, 3)
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where y and x are vectors of the observed indicators of 5 and &,
respectively; e, and o, are intercept vectors; A, and A, are matrices
of factor loadings or regression coefficients giving the impact of the
latent » and & on y and x, respectively; and € and § are the unique
components of y and x. We assume that the unique components
(e and &) have expected values of zero and are uncorrelated with each
other and with ¢ and &.

To apply the 2SLS estimator to equations (1), (2), and (3) requires
that each latent variable has a single observed variable to scale it,
such that

yi=1+¢€ “4)
and
x; =§+4, )

where y; and x; are the vectors of scaling indicators, and y, and x,
are the vectors of the remaining nonscaling indicators. We can then
reexpress equations (4) and (5) as

n=y —& (6)
and
§=X1 — &, @)

and following Bollen (2001:122-24), we can rewrite the latent variable
and measurement models as

yi =a,+By, +Ix, +& —Be —T'§ +¢, (8)
Y2 =0y, + Ayyi — Ay &1 + &, )
Xy = O, + AX2X1 - szal + 82. (10)

These equations are essential to choosing the model-implied [Vs. A
minimal condition for choosing I'Vs is that they must have a nonzero
correlation with the predictor variables in the equation. This condition
is easy to check by using sample estimates of the covariances of the
IVs or by regressing the predictor variables on the IVs and checking
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for nonzero R’s. In addition to being nonzero, the R?s should be
nontrivial to avoid the problems that accompany weak IVs (see
Bound, Jaeger, and Baker 1995). A more difficult condition to evalu-
ate is that the IVs must be uncorrelated with the disturbance term in
the equation in which they will be used.

The only candidates for IVs are observed variables inyy, y», X;, and
X,, but we cannot use any of these that are correlated with the distur-
bances for a particular equation. Equations (8), (9), and (10) reveal
that the error term for most of these equations will be a composite
of several disturbances. For equation (8), the composite includes the
equation error (i.e., the ¢ for the equation) and the unique variables
(i.e., € or § in the composite disturbance) for any scaling indicators
that enter the left- or right-hand side of the equation. The composite
disturbances for equations (9) and (10) include unique variables that
correspond to the indicator as well as to any scaling indicators that
appear on the right-hand side of the equations. Any observed variable
that correlates with the disturbances in this composite is not eligible
to be an IV.!

The challenge is to determine whether an observed variable corre-
lates with the composite disturbance, given the structure of the model.
One solution derives from an examination of the total effects of each
disturbance on each observed variable. Although it is rare to discuss
the direct, indirect, or total effects of disturbances, each disturbance
can be treated in the same way as other latent variables in the model,
including determining the effects that it has on the observed variables.
The model-implied IVs often change from equation to equation, so it
is convenient to consider one equation at a time. First, among the pool
of possible I'Vs, we eliminate any observed variable that is directly or
indirectly affected by a disturbance or unique variable that appears
in the composite disturbance for that equation. We also eliminate any
observed variables that are affected by a disturbance or unique vari-
able that correlates with a disturbance or unique variable that is part of
the composite disturbance of the equation. Checking for the model-
implied correlations between potential IVs and the disturbance terms
of an SEM can be a tedious and error-prone process, especially in a
large model in which many equations are simultaneously estimated.

Even for some smaller models, it can be difficult to ascertain the list
of potential instrumental variables for a given equation. For instance,
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consider the simultaneous equation model in Figure 1. Because the
errors of the three endogenous variables are all correlated, it is easy
to see that the three exogenous predictors—x;, x,, and x;—are the
only available instruments for the three equations. However, suppose
that COV(¢y, &3) is zero. In that case, it is not obvious, but y; could
serve as an instrument in the equation for y,. If both the COV(¢y, &3)
and the COV(¢&,, ¢3) are zero, then y; is a suitable IV for the y, and
¥, equations. Similarly, consider the model of Bollen (1989:12-20,
334-35), reproduced in Figure 2. This model involves one exoge-
nous latent factor &, with three indicators (x; to x3), two endogenous
latent factors n; and n, with four indicators each (y; to y4 and ys to
ys, respectively), a number of correlated errors, and a specific causal
model among the latent factors. For this model, it would be quite dif-
ficult to identify the instrumental variables for each equation without
proceeding quite carefully through the selection steps given above.
This suggests the need for an automated selection algorithm that can
be implemented in standard statistical software.

A first step in creating an I'V selection algorithm is to determine the
total effects of each disturbance or unique variable on the observed
variables in the model. Fortunately, work is available that provides
the total effects of the disturbances and unique variables in SEMs

X1 >
X2 >
X3 >

Figure 1: Simultaneous Equation Example
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Figure 2: General Structural Equation Model Example

(see Bollen 1987, 1989:376-89). Using these results, the reduced-
form equations for the y and x variables are
y=a,+A,d-B)'a,+A,d-B)"'TE
+A,d-B)'¢ +e, (11
Xx=a,+ A&+, (12)

and the total effects of the disturbances on the observed variables are
equal to the coefficient matrices for the disturbances or unique vari-
ables in these equations.” So the total effect of £ ony is A, (I — B,
the total effect of € on y is I, and the total effect of § on x is I. Implicit
in these equations are total effects of 0 for € on x, { onx, and § on y.
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With these total effects, we can outline the steps for finding the
model-implied IVs. For each equation from (8), (9), or (10), we must

1. identify which disturbances or unique components are in the equation;

2. calculate the total effects of €, §, and ¢ on each observed variable in
the model,

3. eliminate as [Vs any observed variables that have a nonzero total effect
originating from the disturbances or unique components from (1)
above;

4. of the remaining observed variables, eliminate any observed variable
affected by a disturbance or unique component that correlates with a
disturbance or unique component identified from (1).

By necessity, the remaining observed variables are the model-
implied IVs. We now describe in more detail how to program this
algorithm for selecting IVs.

PROGRAM FOR SELECTING IVs

The program proceeds in several steps, each of which can be imple-
mented in any programming language capable of manipulating matri-
ces, such as GAUSS, SAS/IML, SPSS, or STATA. We describe these
steps in a general way here so that they can be easily implemented in
any of these languages. The appendix provides an SAS/IML macro
that implements this algorithm. This program is written in a modular
form so that each module corresponds to a specific programming task
or step of the algorithm.

Before implementing the algorithm outlined above, it is necessary
to define the variables in the model and the model structure. First,
each observed variable must be assigned a unique index number and
placed into the appropriate vector (i.e., ¥, ¥2, X;, Or X,). The scal-
ing variables for the latent factors must be designated at this point.
An indicator must be selected that loads only on the latent variable,
and among such indicators, it should be the one hypothesized to be
most closely related to the latent variable. The model structure may
be defined in several ways. One option would be to input the predic-
tors for each equation directly. An alternative is to define the pattern
of fixed and free elements in the regression coefficient matrices Ay,,
A,, B, and IT'. Because the latter approach is more familiar to most
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SEM users, it is the one that we pursue here. The elements in the
regression coefficient matrices are dummy coded, with a 0 indicating
that the parameter is not estimated or is fixed at 0, or a 1 indicating
that the parameter is estimated or fixed to a nonzero value.® Note that
the intercept vectors a,, &, and o, do not affect the selection of IVs
and so are not required. The last piece of information needed to run
the algorithm are the nonzero elements of @,, @3, and ¥ where these
are the covariance matrices for €, 8, and ¢ respectively. As before,
elements that are fixed at O are designated with a 0. However, unlike
the regression coefficients, each nonzero parameter in the distur-
bance/uniqueness matrices must be assigned a unique index number
(note that because these matrices are symmetric, these numbers will
be duplicated for off-diagonal elements).

With this information in hand, we can proceed to Step 1 of the
algorithm outlined above, identifying the composite disturbance of
each equation. To do so, we must determine the model-implied predic-
tors in each equation, which in turn involves scanning the regression
coefficient matrices for nonzero elements. As can be seen in equa-
tions (8), (9), and (10), the relevant regression coefficient matrices
vary depending on whether the dependent variable in the equation
is in y;, ¥2, or X,. For instance, to identify the predictors for the i
element of y;, or y;, we first scan the row of the B matrix associated
with y; for nonzero values. Whenever a nonzero value is found, we
use its column position j to identify the particular predictor in y,
or y;, associated with that coefficient. Then the row of I' associated
with y; is scanned for nonzero elements, using their column positions
J to identify the particular predictor in X;, or x;, associated with that
coefficient. The same approach is used to identify the model-implied
predictors for variables in y, and x,, except that the relevant regres-
sion coefficient matrices are Ay, and A, , respectively. Itis convenient
to stack the predictor arrays for each equation into a matrix P and
to identify each row by setting the first column position to the index
number of the dependent variable of the equation. Predictor arrays
will vary in length, so some must be “padded” with Os for concate-
nation into a single matrix. Each of these operations is demonstrated
in the “Predictors” module of the program in the appendix.

We now have sufficient information to determine the composite
disturbance for each equation in the model. Recall that the equations
for the dependent variables (e.g., equations (8), (9), and (10)) each
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include uniqueness terms associated with the observed dependent
variables, as well as the uniquenesses and disturbances associated
with their predictors. Similarly, each row of P contains the number
of the dependent variable in the first column and the numbers of the
predictors in the remaining columns. Thus, the variable numbers in
each row of P can be used to identify the disturbances of the equation.
If the variable number is in y; or y,, then the index of the correspond-
ing uniqueness parameter from ®, is added to the composite distur-
bance array, designated C; for equation i. On the other hand, if the
variable is in X,, the index of the corresponding uniqueness parameter
in ®; is added to C;. For each dependent variable from y;, it is also
necessary to locate the disturbance of the corresponding 5 and add the
index number of the ¢ to C;. For subsequent manipulation, each C; is
stacked in a matrix C, with each row identified by the dependent vari-
able index, as was done for the P matrix. This step of the algorithm is
illustrated in the “Composite” module of the program in the appendix.

Step 2 of the algorithm is to determine the total effects of the
disturbances and uniquenesses on each variable in the model. This
step involves the construction of several “effects” matrices, T, which
contain the index numbers of the disturbances or uniquesnesses that
affect the variables in the model. Begin by considering the effects
of the disturbances/uniquenesses on the y variables. The total effects
of € ony, or Ty, are composed entirely of direct effects. Specifi-
cally, each ¢ has a direct effect on the corresponding y variable. The
unique index numbers for the & are contained on the diagonal of O,,
and thus Ty, may be constructed by simply extracting these elements
from @, and placing them into a column vector. The effects of ¢ on
yi, or Ty ., are calculated as (I — B) ', and the effects of £ on Y2, Or
Ty,;, are calculated as A,,(I — B)™'. Nonzero elements in Ty,, and
T,,, must then be replaced by the corresponding parameter numbers
from W. The index vectors fory, and y, are then appended to Ty, ; and
T,, ., respectively, so that the first column of the matrices identifies the
variable affected by each disturbace/uniqueness. The resulting matri-
ces are then concatenated together and sorted by the variable index
to create Ty,. The sorting is necessary to place this matrix into the
same index order as Ty.. Ty, and Ty, are then concatenated together
to form a single effects matrix for the disturbances/uniquenesses on
the y variables, designated Ty,..
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Calculating the total effects of the disturbances/uniquenesses on
the x variables is much simpler. The only effects on x are direct effects
from 8, so Tys can be formed like T, by simply extracting the diagonal
elements from ©; and placing them into a column vector. The index
vectors for X; and x, are then combined into a single vector, sorted in
index order, and appended to Ty;s to form the index column for this
matrix. Finally, T,,. and Tys are combined into a single matrix T,
and the rows are sorted by the variable index. Because Ty;. and Tys
are likely to have different numbers of columns, it may be necessary
to “pad” one matrix with columns of Os to make it conformable for
concatenation. The “Effects” module of the program in the appendix
illustrates this step of the algorithm.

In Step 3 of the algorithm, an initial set of potential instruments
for each equation is defined by selecting variables that are unaf-
fected by the disturbances or uniquenesses in that equation. This
step is accomplished by searching the total effects matrix T for the
disturbance/uniqueness numbers that appear in each row of the com-
posite disturbance matrix C. Selecting row i from C, we exam-
ine each column from j=2 to J, where J is the total number of
columns in C (recall that column 1 contains the dependent variable
index for the equation). Each nonzero number C; corresponds to a
disturbance/uniqueness parameter in @,, @;, or W that appears in the
disturbance array for equation i. These index numbers are compared
to those that appear in each row p from T in columns ¢ =2 to Q, where
Q is the total number of columns in T (recall that column 1 contains
the index number of the variable affected by the disturbances). Each
nonzero number 7T, corresponds to a disturbance/uniqueness para-
meter that influences variable p. Of key importance, if at any point
C; = T,,, then variable p is ineligible as an instrument for equation i.
If, however, C;; # T,, for all j and ¢, then the variable index T, is
added to the “potential instrumental variable” array, designated PIV;
for equation i. Each PIV; is indexed by the number of the dependent
variable C;, and the arrays are stacked into a single matrix PIV. To
do so, it may be necessary to “pad” some of the PIV; arrays with
extra Os to equalize their lengths. This step of the algorithm is illus-
trated in the “Potential_IV” module of the program in the appendix.

The final step of the algorithm, Step 4, finalizes the list of
eligible instrumental variables. In this step, variables designated as
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potential instruments for a given equation in Step 3 are reexamined to
evaluate whether they are correlated with any of the parameters in
the composite disturbance of that equation. We begin by setting the
instrumental variable matrix IV equal to the PIV matrix defined in
Step 3. Each row i from PIV is then selected and examined from
column j = 2 to J, where J is the total number of columns in
PIV. Each element PIV;; references a potential instrumental vari-
able for equation i. If PIV; is in y; or y,, ©, is scanned to
determine whether the ¢ affecting PIV;; is correlated with any &
in the composite disturbance for equation i. Alternatively, if PIV;
is in X; or X,, ®; is scanned to determine whether the § affect-
ing PIVj; is correlated with any 4 in the composite disturbance for
equation i. Finally, if PIVj is in y,, it is also necessary to scan W
to determine whether the ¢ associated with PIV;; is correlated with
any ¢ in the composite disturbance for equation i. If any of these
disturbances/uniquenesses are correlated, then the variable index in
IV} is replaced by a 0. The remaining nonzero elements in I'V are the
model-implied instrumental variables for the equations in the model.

EXAMPLE

In this section, we illustrate the IV selection algorithm with an
empirical example. The example considers the relationship between
industrialization and political democracy among developing countries
from 1960 to 1965. Further description of the model is available in
Bollen (1989:12-20, 334-35). Figure 2 provides a path diagram of
the model. We begin by relabeling the variables and the disturbance/
uniqueness parameters with numbers, as shown in Figure 3. In this
new diagram, each variable has been assigned a unique variable
number, and each nonzero element in the disturbance/uniqueness
matrices has been assigned a unique parameter number. For ease of
reference, the uniqueness of each observed variable has been assigned
the same number as that observed variable. The scaling variables for
N1, M2, and &) are variables 1, 5, and 9, respectively. Variables 2 to 4 and
6 to 8 constitute y,, and variables 10 to 11 constitute x,. The “Main”
module of the example SAS program in the appendix demonstrates
how this model would be input by the user.
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58

Figure 3: Industrialization and Democracy Example to Illustrate Algorithm

Step 1 of the algorithm defines the composite disturbance of each
equation and arrays them into the matrix

-1 [ 1819 07
51195109
212100
313100
414100

C=l6 16500 (3)
717500
8§ | 8500
101090 0
| 11111900
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The rows of matrix C correspond to the dependent variables in
equations (8), (9), and (10). The first column is partitioned from the
rest of the row to indicate that this column contains the indices of
the dependent variables of the model equations, while the remain-
ing columns contain the indices of the disturbances/uniquenesses for
those equations. The numbers contained in the matrix correspond to
the variables and disturbance/uniqueness labels given in Figure 3.
The disturbance/uniqueness parameter numbers are printed in bold
so that they will stand out from the zeros, which are merely used as
place holders in the matrix. Variables 1 and 5 are the scaling indica-
tors, and thus rows 1 and 2 of C give the composite disturbances for
the latent variable model in equation (8). For instance, row 1 of this
matrix indicates that the equation for 5, scaled by variable 1, contains
parameters 18, 1, and 9, which correspond to the disturbance of 7,
and the uniquenesses of variables 1 and 9. Similarly, the rows indexed
by variables 2 to 4 and 6 to 8 give the composite disturbances for the
measurement model in equation (9). Variables 10 and 11 are from x,,
so the last two rows identify the composite disturbances for the mea-
surement model in equation (10). There is no row corresponding to
variable 9, the scaling indicator for &€, because variable 9 is contained
in x; and so is not a dependent variable in equation (8), (9), or (10).

In Step 2, the total effects of the disturbances/uniqueness on the
observed variables are calculated to be

1] 1 18 0
212 18 0
313180
41 4 18 0
5151819
T=| 6| 6 18 19 |. (14)
717 18 19
S| 8 1819
9|900
1010 0 0
L1111 0 0 _

This matrix is also partitioned, with the first column indicating the
variable index and the remaining columns indicating the parameter
indices of disturbances that have a nonzero total effect on the variable.
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The disturbance parameters are printed in bold to stand out from
the place-holding O elements. Note that there are several submatrices
present in T. For instance, the first eight rows of column 2 represent
Ty, while the last three rows are Tys. In addition, Ty, is contained in
the first eight rows of columns 2 and 3.

Step 3 of the algorithm compares matrices T and C to provide us
with an initial set of potential instruments for each equation, given as

1 110110 0 0 00 0O O 7
2

(9]
w
e
[—}
.
[

0 11

0 11
0 11

PIV = 0 11 (15)

0

0

11
11
8 11
10

0NN W
NN WA A
W W WWu vt i &
SN N SN N - )
DA III
AN XL XXX XO

e e e e DN DN W

— —
— O

2

This matrix is partitioned such that the first column indicates the
number of the dependent variable in the equation, and the remaining
columns index the observed variables that are not affected by any of
the disturbances for that equation. The variable indices are printed in
bold to differentiate them from the place-holding Os in the matrix. Not
all of these variables are eligible as instruments, however, as some
are correlated with the disturbances for the equation.

In Step 4, the indices of ineligible variables in PIV are replaced
with Os, leaving only the variable indices of the model-implied IVs,
given as

w
=
9]
=)
|
=]

-1 101100 0000 01
5012 34101100 0 0
213000 7 891011
312406 0891011
410306 70091011

V=l 610034 70911 (16)
710204 6891011
8§10 2300791011
0|1 234567811
| 11]1 234 5678 10
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This matrix is partitioned in the same way as PIV. The variables that
meet all of the criteria to be used as instruments for the different
equations are printed in bold. For instance, row 1 of this matrix indi-
cates that the equation for 7, scaled by variable 1, has two eligible
instruments, variables 10 and 11. Row 2 indicates that the equation
for n,, scaled by variable 5, has five eligible instruments, variables
2, 3, 4, 10, and 11. Rows 3 through 8 indicate the instruments for
the measurement equations of y,, and the last two rows indicate the
instruments for the measurement equations of x;.

As an example of how these matrices are constructed and used to
specify the model-implied IVs of each equation, we trace through the
selection algorithm for a single variable in the model, variable 2 of
Figure 3. As indicated by row 2 of the T matrix, the model implies
that variable 2 is affected both by its unique residual, indexed by the
number 2, and by the disturbance of 7, indexed by the number 18.
In the C matrix, these numbers appear in the composite disturbances
of the equations for variables 1 and 2. As such, the PIV matrix lists
only variables 3 through 11 as potential instruments for the equation.
However, we must also rule out variables that are affected by a distur-
bance or uniqueness that correlates with a disturbance or uniqueness
in the composite disturbance for the equation. Row 3 of the C matrix
indicates that the composite disturbance for the equation includes
uniquenesses 1 and 2. Scanning through @, (or visual examination
of the model in Figure 3) reveals that uniqueness 1 is correlated with
uniqueness 5, ruling out variable 5 as an instrument. Furthermore,
uniqueness 2 is correlated with 4 and 6, ruling out variables 4 and 6
as instruments. Thus, in the IV matrix, variables 4 to 6 are “zeroed”
out as eligible instruments for the equation for variable 2.

SUMMARY

One obstacle to the broader implementation of the 2SLS estimator in
SEM software is that the procedure requires selection of IVs for each
equation in the model. This article outlines a general algorithm for
selecting the IVs for each equation in an SEM. Our appendix provides
an IV selection program in Proc IML in SAS to illustrate its imple-
mentation. The same algorithm could be implemented in many matrix
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programming languages and should be adaptable to existing SEM
packages. We also should point out that although the algorithm works
for models with latent variables, it also applies to standard simulta-
neous equation models in which latent variables are not present such
as is typical in econometrics. In the simultaneous equation situation
typical of econometrics, in which all disturbances are correlated and
no measurement error is allowed, then this algorithm is not needed
since only the exogenous variables in the system are IVs. But in more
complicated models with some, but not all, disturbances uncorrelated
or when multiple indicators and measurement error are present, then
this algorithm should prove helpful.

One limitation of our work is that we have not discussed the selec-
tion of IVs in models with interactions of latent variables. Bollen
(1995) and Bollen and Paxton (1998) give rules for selecting IVs in
these models. Another limitation is that we do not discuss the use
of 2SLS in models in which all possible scaling indicators load on
two or more factors such as occurs in multitrait multimethod models.
However, the algorithm that we provide here will cover the majority
of applications that occur in practice and should make it easier to use
the 2SLS estimator with SEMs.

It should be remembered that the algorithm derives model-implied
IVs. If the model is misspecified, some of the IVs chosen by using our
IV selection strategy could be in error. In the case of full-information
estimators such as maximum likelihood, this misspecification could
have systemwide ramifications. For 2SLS, the effects of the mis-
specification are restricted to the misspecified equations and those
equations with the incorrect IVs. We recommend that researchers use
tests for the suitability of the IVs in overidentified equations. For
example, Basmann (1957, 1960) has an overidentification test that
appears to perform well and is available in Proc Syslin in SAS. Other
tests are available as well (e.g., Anderson 1951; Anderson and Rubin
1949; Sargan 1958). The null hypothesis of these tests is that all IVs
are uncorrelated with the composite disturbance of the equation in
which they are being used. A significant test statistic suggests that at
least one IV is not suitable.

Another point to emphasize is that the algorithm chooses all model-
implied IVs for an equation. There are simulation and analytical
results that suggest there are sometimes advantages to using a subset
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of the possible I'Vs. For example, Bound et al. (1995) show that using
variables only weakly related to the endogenous explanatory vari-
ables as instrumental variables can lead to inconsistent estimates, even
if there is only a weak relationship between the instrument and the
error term in the structural equation. In addition, analytical work by
Mariano (1977) illustrates that the absolute bias of the estimator is
“an increasing function of the degree of overidentification” (see also
Magdalinos 1985). We thus recommend that the algorithm be used to
identify all possible IVs, from which a smaller set may be used in the
actual estimation process.

R R R L T L S S L ¥
/* */
/* Program: Automated IV Selection */
/* By: Daniel Bauer and Kenneth Bollen */
/* Last Revised: 09/04/2003 */
/* */

/% K KKK KK Kk Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o ok o o o K K K K K K K KK K K K Kk Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ko /)

options nocenter;
title ’Automated IV Selection’;

PROC IML;

R

/* MODULE: FINAL_IV */
/* */
/* Create IV = Matrix with one row for every equation in the model. Column */
/* position 1 contains the dependent variable index. Remaining */
/* columns contain indices of variables that are eligible */
/* instruments for that equation. */
/* */

R R T e

START FINAL_IV;
* MAKE FINAL SELECTION OF INSTRUMENTAL VARIABLES FOR EACH EQUATION;

* Check to see if potential instruments are affected by
any disturbances correlating with any disturbance in the
composite disturbance of equation;

IV = PIV;
DO i = 1 to NROW(PIV);
DO p = 2 to NCOL(PIV) ;
IF PIV[i,p] > 0 THEN
DO j = 2 to NCOL(Comp) ;
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DO g = 2 to NCOL(Total);
IF (Comp[i,j] > 0) & (Total[PIVI[i,p],qg] > 0) THEN DO;

* check if element from composite and element from
total in same matrix;

* if so, check if covariance between disturbances = 0;

IF ANY (ThetaE=Comp[i,j]) & ANY(ThetaE=Total[PIV[i,p],q]) THEN DO;
DO r = 1 to NROW(ThetaE) ;

DO ¢ = 1 to NCOL(ThetakE) ;

IF Comp[i,j] = ThetaE[r,c] THEN locl = r;
IF Total[PIV[i,pl,q] = ThetaE[r,c] THEN loc2 = c;
END;

END;
IF ThetaE[locl,loc2] > 0 THEN DO;
IvV[i,p]l = 0;
END;
END;
IF ANY (ThetaD=Comp[i,j]) & ANY(ThetaD=Total[PIV[i,p],q]) THEN DO;
DO r = 1 to NROW(ThetaD) ;
DO ¢ = 1 to NCOL(ThetaD);
IF Comp[i,j] = ThetaD[r,c] THEN locl = r;
IF Total[PIV[i,p],q] = ThetaD[r,c] THEN loc2 = c;
END;
END;
IF ThetaD[locl,loc2] > 0 THEN IV[i,p] = 0;
END;
IF ANY(Psi=Comp[i,Jj]) & ANY(Psi=Total[PIV[i,p],q]) THEN DO;
DO r = 1 to NROW(Psi);
DO ¢ = 1 to NCOL(Psi);

IF Comp[i,j] = Psil[r,c] THEN locl = r;
IF Total[PIV[i,p]l,q] = Psi[r,c] THEN loc2 = c;
END;
END;
IF Psi[locl,loc2] > 0 THEN IVI[i,p] = 0;
END;
END;
END;
END;
END;
END;
PRINT IV;

* Print IV matrix;
PRINT ‘*****% MODEL-IMPLIED INSTRUMENTAL VARIABLES ******’;
PRINT ‘DV = Dependent Variable; IVs = Instrumental Variables’;
PRINT ' (Numbers Correspond to User-Defined Indices for Variables)’;
Iv2 = IV; *Sorting by DV index;
IV[rank(IV[,1]),]1=IV2;
DO 1 = 1 to NROW(IV);

DV = IV[i,1];

IVs = {0};

DO j = 2 to NCOL(IV);

IF IV[i,j] > O THEN
IVs = IVs||IV[i,j];

END;

IF NCOL(IVs) > 1 THEN IVs = IVs[1l,2:NCOL(IVs)];

PRINT DV IVs;
END;

443



444  SOCIOLOGICAL METHODS & RESEARCH

FI

NISH;

R e

/*
/*
/*
/*
/*
/*
/*
/*

JRE KKK KKK KKK KK IR K F IR H R AR F IR AR K I KR I KKK I KKK I IR KK R AR K IR X I IR F KK H KKK

MODULE: POTENTIAL_IV

Create PIV = Matrix of potential instrumental variables. Column position 1
contains the variable index of the dependent variable from
the equation. The remaining column positions contain the indices
of variables that are not affected by disturbances in composite
disturbance of the equation.

START POTENTIAL_IV;

*

DO

EN!

PR

FI

CREATE MATRIX PIV OF POTENTIAL INSTRUMENTAL
VARIABLES FOR EACH EQUATION;

i = 1 to NROW(COMP) ;

PIVi = COMP[i,1];
DO p = 1 to NROW(Total) ;

inst = 1;
DO j = 2 to NCOL(COMP) ;
IF (COMP[i,3j] > 0) & (Inst = 1) THEN
DO g = 2 to NCOL(Total);
IF COMP[i,j] = TOTAL[p,qg] THEN Inst = 0;

END;
END;
IF inst = 1 THEN PIVi = PIVi||TOTAL([p,1];
END;

*array PIVi into matrix PIV accounting for fact that they vary in length;
IF i = 1 THEN PIV = PIVi;
ELSE DO;

IF NCOL(PIV) = NCOL(PIVi) THEN;

ELSE DO;

*/
*/
*/
*/
*/
*/
*/
*/
*/

IF NCOL(PIV) > NCOL(PIVi) THEN DO; *Pad PIVi with zeros to be conformable;

Add = J(1, (NCOL (PIV)-NCOL(PIVi)),O0);
PIVi = PIVi||Add;
END;

ELSE DO; *Pad PIV with zeros to be conformable;

Add = J(NROW (PIV), (NCOL(PIVi)-NCOL(PIV)),0);
PIV = PIV||Add;
END;
END;
PIV = PIV//PIVi;
END;
D;

INT PIV;

NISH;

R ]

/*
/*
/*
/*
/*
/*
/*

MODULE: EFFECTS

Create TOTAL = Matrix with one row for every variable in the model.
Column position 1 contains the variable index. Remaining
columns contain indices of disturbances that have a non-zero
total effect on that variable.

*/
*/
*/
*/
*/
*/
*/

R L
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START EFFECTS;
/***** calculate total effects of disturbances on observed variables *****/

* FIRST CALCULATE TOTAL EFFECTS OF ERRORS ON Ys;
IF yl > 0 THEN DO;

*calculate total effects of epsilon on ys;
TotalE = VECDIAG (ThetakE) ;

*calculate total effects of zeta on yl through Beta;
TotalZ_yl = INV(I(NCOL(yl))-Beta);

*calculate total effects of zeta on y2 through Lambda;
IF y2 > 0 THEN DO;

TotalZ_y2 = ly2*TotalZ_yl;
END;

* Replacing non-zero elements in TotalZ_yl and TotalZ_y2 with appropriate zeta;
DO i = 1 to NROW(TotalZ_yl);
DO j = 1 to NCOL(TotalZ_yl);
IF TotalZ_yl([i,j] "= 0 THEN TotalZ_yl[i,j] = Psilj,3jl;
END;
END;
IF y2 > 0 THEN DO i = 1 to NROW(TotalZ_y2);
DO j = 1 to NCOL(TotalZ_y2);
IF TotalZ_y2[i,j] "= 0 THEN TotalZ_y2[i,j] = Psil(j,jl;
END;
END;

*Combine TotalZ_yl and TotalZ_y2 and sort by index to match up with TotalE;

Totalz_yl = (yl')||TotalZ_yl; *Indexing TotalZ_yl;
IF y2 > 0 THEN DO;
TotalZ_y2 = (y2')||TotalZ_y2; *Indexing TotalZ_y2;
TotalY = TotalZ_yl//TotalZ_vy2;
END;
ELSE DO;
TotalY = TotalZ_yl;
END;
TotalY2 = Totaly;
TotalY[rank(TotalY[,1]),]=TotalYy2;

TotalY = TotalY||Totalk;

IF x1 = 0 THEN DO;
Total = Totaly;
END;
END;

* CALCULATE TOTAL EFFECTS OF ERRORS ON Xs;
IF x1 > 0 THEN DO;
IF x2 > 0 THEN TotalX = (x1')//(x2'); *Creating Index Column of TotalX;
ELSE TotalX = x1‘;
TotalD = VECDIAG (ThetaD) ;

TotalX2 = TotalX; *Sorting Index Column;
TotalX[rank(TotalX[,1]),]=TotalX2;
TotalX = TotalX||TotalD; *Adding total effects of delta;

IF yl = 0 THEN DO;
Total = TotalX;
END;
END;
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* COMBINE TOTALX AND TOTALY INTO ONE MATRIX;
* Need to pad TotalX or TotalY with Os so equivalent # columns in each;
IF y1l > 0 & x1 > 0 THEN DO;
IF NCOL(TotalY) > NCOL(TotalX) THEN DO;
Add = J(NROW(TotalX), (NCOL(TotalY)-NCOL(TotalX)),0);
TotalX = TotalX||Add;
END;
ELSE DO;
Add = J(NROW(TotalY), (NCOL(TotalX)-NCOL(TotalY)),0);
TotalY = TotalY||Add;
END;
Total = TotalY//TotalX;
END;

* Sort Total;
Total2 = Total;
Total[rank(Total[,1]),]1=Total2;

PRINT TOTAL;
FINISH;

JRE KKK KKK KKK KK KKK I IR K IR AR K IR AR K I KA KA H AR KK KA F IR A IR AR F R AR KK AKX I IR AR K R KA KK/

/* MODULE: COMPOSITE */
/* */
/* Create COMP = Matrix with one row for every equation in the model. Column */
/* position 1 contains the dependent variable index. Remaining */
/* columns contain indices of disturbances that have a non-zero */
/* total effect on that variable. */
/* */
R Kk kK kK Kk Kk kK kKR Kk ko ko kK kK Kk ko ko kK Kk Kk ko kK kR Kk Kk kK kK kKR Kk Kk kK kK kK /
START COMPOSITE;
* First need to keep track of position of each variable index in y or x series;
* Sorting Y and X vectors into index order;
IF yl > 0 THEN DO;

VecY = yl‘;

IF y2 > 0 THEN VecY = VecY//y2';

OrderY = VecY;

OrderY [rank (OrderY) , ]=VecY;

OrderY = Rank (OrderY) | |OrderY;
END;
IF x1 > 0 THEN DO;

VecX = x1';

IF x2 > 0 THEN VecX = VecX//x2';

OrderX = VecX;

OrderX[rank (OrderX) , ] =VecX;

OrderX = Rank (OrderX) | |OrderX;
END;
* Find Composite Disturbance for each equation;
DO i = 1 to NROW(PRED) ; *for each DV, pull predictors from PRED;

COMPi = PRED[i,1]; *set first column in row of DIST to dv index;

IF yl > 0 THEN DO j = 1 to NCOL(yl);
*if DV is in yl, add corresponding zeta;
IF COMPi = yl[j] THEN DO;
COMPi = COMPi| |Psilj,3];
END;
END;



DO j =1 to

IF PRED[
COMPi

END;
IF x1 > 0
IF PRED[
COMPi

END;

END;
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NCOL (PRED) ;

*examine each variable in equation
IF yl > 0 THEN DO k = 1 to NROW(OrderY) ;

447

(including dv) ;

*identify source of variable and find its error;

i,j] = OrderY[k,2] THEN

= COMPi| |ThetaE[OrderY(k,1],0rderY[k,1]];

THEN DO k = 1 to NROW(OrderX) ;

i,3] = OrderX[k,2] THEN

= COMPi| |ThetaD[OrderX[k,1],0rderX[k,1]1];

*array COMPi into matrix COMP accounting for fact that they vary in length;

IF i = 1 THE
ELSE DO;
IF NCOL (CO!
ELSE DO;
IF NCOL(

Add = J(1, (NCOL (COMP)-NCOL (COMPi)),0) ;

COMPi
END;
ELSE DO;
Add =
COMP =
END;
END;
COMP = COM
END;
END;

PRINT COMP;

FINISH;

N COMP = COMPi;

MP) = NCOL(COMPi) THEN;

COMP) > NCOL(COMPi) THEN DO;

*Pad COMPi with zeros to be conformable;

= COMPi| |Add;

*Pad COMP with zeros to be conformable;
J (NROW (COMP) , (NCOL (COMP1i) -NCOL (COMP) ), 0) ;

COMP| |Add;

P//COMPi ;

R e e e e e L]

/* MODULE: PRE!
/%
/* Create PRED

DICTORS

= Matrix with one row for every equation in the model. Column

/* position 1 contains the dependent variable index. Remaining
/* columns contain varaible indices of the predictors in the
/* equation.

/*

*/
*/
*/
*/
*/
*/
*/

/K K KKk Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok K K R KK K KK K Kk Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

START PREDICTO:

RS ;

*Constructing PRED matrix of predictors for which IVs are needed;

*Create PREDi

for each variable in yl1 (yl_i);

*Search Beta and Gamma matrix for yls and xls that influence yl_i;

IF y1 > 0 THEN
PREDi = y1[i

DO i = 1 to NROW(Beta) ;
1;

DO j = 1 to NCOL(Beta);

IF Betali,
PREDi =
END;
END;
IF x1 > 0 TH
DO j =1t
IF Gamma
PREDi

j] "= 0 THEN DO;
PREDi| |y1[]];

EN
o NCOL (Gamma) ;

[i,31 "= 0 THEN DO;
= PREDi| |x1[j];

*Starting with DV index;
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END;
END;
*Add PREDi to larger PRED matrix here;
IF i=1 THEN DO;
PRED = PREDi;
END;
ELSE DO;
*array PREDi into matrix PRED accounting for fact that they vary in length;
IF NCOL(PRED) "= NCOL(PREDi) THEN DO;
IF NCOL(PRED) > NCOL(PREDi) THEN DO;
*Pad PREDi with zeros to be conformable;
Add = J(1, (NCOL (PRED)-NCOL (PREDi)),0);
PREDi = PREDIi | |Add;
END;
ELSE DO; *Pad PRED with zeros to be conformable;
Add = J(NROW(PRED) , (NCOL (PREDi)-NCOL (PRED)),0);
PRED = PRED| |Add;
END;
END;
PRED = PRED//PREDi;
END;
END;

*Create PREDi for y2, concatenate with PRED;
IF y2 > 0 THEN DO i = 1 to NCOL(y2);
PREDi = y2[i]; *Starting with DV index;
DO j = 1 to NCOL(yl);
IF 1ly2[i,j] > 0 THEN DO;
PREDi = PREDi||yll[,3];
END;
END;
*array PREDi into matrix PRED accounting for fact that they vary in length;
IF NCOL(PRED) = NCOL(PREDi) THEN;
ELSE DO;
IF NCOL (PRED) > NCOL(PREDi) THEN DO; *Pad PREDi with zeros to be conformable;
Add = J(1, (NCOL (PRED)-NCOL (PREDi)),0) ;
PREDi = PREDIi||Add;
END;
ELSE DO; *Pad PRED with zeros to be conformable;
Add = J(NROW (PRED), (NCOL (PREDi)-NCOL (PRED)),0) ;
PRED = PRED| |Add;
END;
END;
PRED = PRED//PREDi;
END;

*Create PREDi for x2, concatenate with PRED;
IF x2 > 0 THEN DO i = 1 to NCOL(x2);
PREDi = x2[i]; *Starting with DV index;
DO j = 1 to NCOL(x1);
IF 1x2[i,3j] > 0 THEN DO;
PREDi = PREDi||x1[,3];
END;
END;
IF (yl = 0) & (i=1) THEN DO;
PRED = PREDi;
END;
ELSE DO;
*array PREDi into matrix PRED accounting for fact that they vary in length;
IF NCOL(PRED) = NCOL(PREDi) THEN;
ELSE DO;
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IF NCOL(PRED) > NCOL(PREDi) THEN DO;

*Pad PREDi with zeros to be conformable;

Add = J(1, (NCOL (PRED) -NCOL (PREDi)),0) ;
PREDi = PREDi||Add;
END;

ELSE DO; *Pad PRED with zeros to be conformable;

Add = J(NROW (PRED) , (NCOL (PREDi) -NCOL (PRED) ), 0) ;
PRED = PRED||Add;
END;
END;
PRED = PRED//PREDi;
END;

END;

PRINT PRED;

FINISH;

/KK KKK Kk Kk ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko kK K K K K KK K K K Kk ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o/

/*
/*
/*
/*
/*

MODULE: MAIN
User assigns index numbers to variables and disturbances and defines the
model

*/
*/
*/
*/
*/

KKk ke ko ok ok ok ok ok ok ok ok ok ok o ok ok ok ok o kK K KK KK KK KKKk ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ek

START MAIN;
/* INDEX VARIABLES IN THE MODEL
/* Create row vectors designating index of scaling and nonscaling variables.
/* Numbers will subsequently be used to reference variables. Use {0} if no
/* variables are in the vector.
/* Note that the order is arbitrary (ys do not have to precede xs etc), but
/* the specified order must be followed in other matrices. For example,
/* ThetaE(l,1)references the error variance of whichever y has the first
/* position (lowest number) in the variable list for yl and y2.
vl = {1 5}; * gcaling y's;
v2 = {2 3 46 7 8}; * non-scaling y's;
x1 = {9}; * scaling x’'s (and exogenous x's);
x2 = {10 11}; * non-scaling x’'s;
/* SET UP PARAMETER MATRICES
/* Parameter matrices should be specified in binary -- non-zero elements
/* labeled 1; zero elements labeled 0. Set null matrices to {0}.
/* Create loading matrix for y2 and x2 variables = lambda y2 and lambda x2
1y2 = {1 0,
10,
10,
01,
01,
0 1};
1x2 = {1,
1};

/*
/*
/*

Create matrices of structural parameters Beta and Gamma
Note - may be necessary to use values other than 1 to code non-zero effects
in Beta if you get an error that ‘Matrix should be non-singular’

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/

*/
*/
*/
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B

G

/*
/*
/*
/*
/*
/*
/*

T

T

P

RUN
RUN
RUN
RUN
RUN

FIN

RUN;

QUT

eta = {0 0,
1 0};
amma = {1,

1};

INDEX DISTURBANCES

Each unique non-zero element in ThetaE, ThetaD and Psi should be given a
unigue index number. It is helpful to label the diagonals of ThetaE and
ThetaD with the same numers that index the Y and X variables that the
elements correspond to for easy reference later. If there are no parameters
in a matrix, set it to {0}. Note that upper and lower off-diagonal matrices
should contain the same numbers.

hetaE = {1 0 0 012 0 0 O,
0 2 016 013 0 O,
0O 0 3 0 0 014 o0,
016 0 4 0 0 0 15,
12 0 0 0 5 0 0 O,
013 0 0 0O 6 0 17,
0O 014 0 0 0 7 O,
0O 0 015 017 0 8};

hetaD = { 9 0 0O,
0 10 O,
0 0 113%;

si = {18 0,

0 19};

PREDICTORS;

COMPOSITE;

EFFECTS;

POTENTIAL_IV;

FINAL_IV;

ISH;

T;

*/

*/
*/

*/
*/

1. We remind the reader that the selection of the instrumental variables (IVs) is conditional
on the model specification. If an equation is overidentified such that there are more IVs than
the minimum needed for that equation, then there are overidentification tests available that can
point to problems in the model specification. We return to this issue in the summary.

2. See Bollen (1987) for stability conditions that are typically applied when defining total
and indirect effects.
3. This dummy coding scheme may occasionally lead I — B to be noninvertable (if any row
or column of I — B can be expressed as a linear combination of the other rows or columns). In
such a situation, the user could adopt a nonsense coding scheme, inserting other nonzero values
in place of some of the 1s in B to remove the linear redundancy.
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