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Figure and Table Captions 

Figure A. Average bias for the threshold estimates, across estimator, number of outcome categories, 
and distribution shape. Notes. The estimator of linear REML (Restricted normal-theory Maximum 
Likelihood) was used when fitting the linear multilevel model. The estimators of PQL (Penalized 
Quasi-Likelihood) or logistic ML (with adaptive quadrature) were used when fitting the logistic 
multilevel model. Points for two-category conditions are not connected to points for 3-7 category 
conditions because their distribution shapes do not exactly correspond. Results are collapsed over the 
number of clusters, cluster size, and the magnitude of the random effects. 
 
Figure B. Average bias for the threshold estimates, across logistic estimators, number of outcome 
categories, and cluster size. Notes. Logistic estimators were either PQL (Penalized Quasi-Likelihood) 
or logistic ML (Maximum Likelihood) with adaptive quadrature. Results are collapsed over number 
of clusters and distribution shape and do not include linear multilevel model conditions. 

Figure C. Bias for the fixed effect estimate of the level 1 predictor Xij, across estimator, number of 
outcome categories, and distribution shape. Notes. The estimator of linear REML (Restricted normal-
theory Maximum Likelihood) was used when fitting the linear multilevel model. The estimators of 
PQL (Penalized Quasi-Likelihood) or logistic ML (with adaptive quadrature) were used when fitting 
the logistic multilevel model. Results are collapsed over the number of clusters, cluster size, and the 
magnitude of the random effects. 

Figure D. Bias for the fixed effect estimate of the level 2 predictor Wj, across estimator, number of 
outcome categories, and distribution shape. Notes. The estimator of linear REML (Restricted normal-
theory Maximum Likelihood) was used when fitting the linear multilevel model. The estimators of 
PQL (Penalized Quasi-Likelihood) or logistic ML (with adaptive quadrature) were used when fitting 
the logistic multilevel model. Results are collapsed over the number of clusters, cluster size, and the 
magnitude of the random effects. 

Figure E. Bias for the fixed effect estimate of the cross-level interaction XijWj, across estimator, 
number of outcome categories, and distribution shape. Notes. The estimator of linear REML 
(Restricted normal-theory Maximum Likelihood) was used when fitting the linear multilevel model. 
The estimators of PQL (Penalized Quasi-Likelihood) or logistic ML (with adaptive quadrature) were 
used when fitting the logistic multilevel model. Results are collapsed over the number of clusters, 
cluster size, and the magnitude of the random effects. 

Figure F. Bias for the fixed effect estimate of the level 1 predictor Xij, across logistic estimators, 
number of outcome categories, and cluster size. Notes. Logistic estimators were either PQL 
(Penalized Quasi-Likelihood) or logistic ML (Maximum Likelihood) with adaptive quadrature. 
Results are collapsed over number of clusters and distribution shape and do not include linear 
multilevel model conditions. 



Figure G. Bias for the fixed effect estimate of the level 2 predictor Wj, across logistic estimators, 
number of outcome categories, and cluster size. Notes. Logistic estimators were either PQL 
(Penalized Quasi-Likelihood) or logistic ML (Maximum Likelihood) with adaptive quadrature. 
Results are collapsed over number of clusters and distribution shape and do not include linear 
multilevel model conditions. 

Figure H. Bias for the fixed effect estimate of the cross-level interaction XijWj, across logistic 
estimators, number of outcome categories, and cluster size. Notes. Logistic estimators were either 
PQL (Penalized Quasi-Likelihood) or logistic ML (Maximum Likelihood) with adaptive quadrature. 
Results are collapsed over number of clusters and distribution shape and do not include linear 
multilevel model conditions. 

Figure I. Bias for the fixed effect SE of the level 1 predictor Xij, across logistic estimators, number of 
outcome categories, and cluster size. Notes. SE=standard error. Logistic estimators were either PQL 
(Penalized Quasi-Likelihood) or logistic ML (Maximum Likelihood) with adaptive quadrature. 
Results are collapsed over number of clusters and distribution shape and do not include linear 
multilevel model conditions. 

Figure J. Bias for the fixed effect SE of the level 2 predictor Wj, across logistic estimators, number of 
outcome categories, and cluster size. Notes. SE=standard error. Logistic estimators were either PQL 
(Penalized Quasi-Likelihood) or logistic ML (Maximum Likelihood) with adaptive quadrature. 
Results are collapsed over number of clusters and distribution shape and do not include linear 
multilevel model conditions. 

Figure K. Bias for the fixed effect SE of the cross-level interaction XijWj, across logistic estimators, 
number of outcome categories, and cluster size. Notes. SE=standard error. Logistic estimators were 
either PQL (Penalized Quasi-Likelihood) or logistic ML (Maximum Likelihood) with adaptive 
quadrature. Results are collapsed over number of clusters and distribution shape and do not include 
linear multilevel model conditions. 

 

Table A. Coverage for fixed effects (averaged across fixed effects for Xij, Wj, XijWj) across number of 
categories, cluster size,  variance component sizes, and logistic estimators. Notes. PQL=Penalized 
Quasi-Likelihood and logistic ML=Maximum Likelihood with adaptive quadrature 

Table B. Coverage for fixed effects (averaged across fixed effects for Xij, Wj, XijWj), across number of 
categories, distribution shape and estimator. Notes. PQL=Penalized Quasi-Likelihood and logistic 
ML=Maximum Likelihood with adaptive quadrature and REML=Restricted normal-theory 
Maximum Likelihood. 2-bal=binary balanced condition; 2-unbal=binary unbalanced condition. 
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Online Appendix Table A. 

categories 5 10 20 5 10 20 5 10 20
2 .93 .92 .91 .83 .83 .86 .56 .64 .76
3 .93 .93 .93 .86 .87 .89 .68 .79 .88
5 .94 .93 .94 .90 .91 .92 .83 .89 .92
7 .95 .94 .94 .92 .92 .94 .89 .92 .93

categories 5 10 20 5 10 20 5 10 20
2 .97 .95 .95 .96 .95 .95 .96 .95 .94
3 .95 .95 .95 .95 .95 .94 .95 .95 .95
5 .96 .95 .95 .95 .95 .94 .95 .95 .94
7 .96 .95 .94 .95 .95 .95 .95 .95 .94

PQL

cluster size
Small Variances Medium Variances

cluster size

cluster size cluster size

Large Variances
cluster size

Large Variances
cluster size

Small Variances Medium Variances
Logistic ML



Online Appendix Table B.

categories 2-bal 2-unbal bell polarized skew 2-bal 2-unbal bell polarized skew 2-bal 2-unbal bell polarized skew
2 .18 .12 .79 .81 .95 .95
3 .36 .29 .31 .87 .87 .84 .95 .95 .95
5 .65 .47 .44 .93 .91 .89 .95 .95 .95
7 .78 .55 .48 .94 .93 .91 .95 .95 .95

Linear REML PQL Logistic ML
distribution shapedistribution shapedistribution shape



Details on PQL Estimation 

 Here we provide additional details on the PQL estimator considered in the simulation 

study.  We begin by showing this estimator for a binary outcome then note the generalization for 

ordinal outcomes. 

 For a binary outcome Y, the multilevel logistic model can be expressed as 

  1
ij ij ijY g r   (1) 

where  1
ijg   is the inverse of the logistic link function, returning the expected value 

(predicted probability) for ijY : 
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 The model is “linearized” using a Taylor series expansion of  1
ijg  , with the 

linearization improved across successive iterations (see Raudenbush & Bryk, 2001, p. 457-459 

and Goldstein, 1995, p. 112-113). Using a first-order expansion about the estimate of ij  

obtained in iteration s, denoted ( )s
ij , we may write 

       1 1 ( ) 1 ( )s s
ij ij ij ij ijg g g           (3) 

where  1
ijg    is the first derivative of the inverse link function 
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The function  1
ijg    is evaluated at the current estimates ( )s

ij  to produce the value ( )s
ijw : 
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 The linear approximation in Equation (3), using ( )s
ijw  in place of  1

ijg   , is then 

substituted into Equation (1) to yield  

    1 ( ) ( ) ( )s s s
ij ij ij ij ij ijY g w r       (6) 

Now the equation can be rearranged so that the right side is linear: 
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    (7) 

The quantities ijY ,  1 ( )s
ijg  , ( )s

ijw , and ( )s
ij  are all “known” in the sense that they are either 

observed or computable at each iteration s; hence, we can rewrite Equation (7) as  

 ij ij ijZ e   (8) 

where 

 
 1 ( )
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ij ij s
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   (9) 

is a working variate or pseudo-data, updated from one iteration to the next and ( )s
ij ij ije r w  is 

the Level-1 residual term scaled by ( )s
ijw .  Note that the model for the working variate is linear 

with heteroscedastic residuals.  We assume that a normal distribution will hold, at least 

approximately, for the rescaled residuals, or  ( )~ 0,1 s
ij ije N w .  Note that ( )s

ijw  effectively serves 

as a weight for the observation (similar to weighted least squares), allowing for 

heteroscedasticity of the response distribution.  With this approximation in place the model for 

the working variate is of the same form as the linear multilevel model.  That is, the working 

variate is a linear combination of normally distributed random effects and normally distributed 

residuals. The usual normal-theory estimators used for linear multilevel models (e.g., Restricted 

Maximum Likelihood, REML) can therefore be applied to fit the model in Equation (8). 



 In practice the algorithm is started by choosing initial values for (0)
ij  and (0)

ijZ .  For 

instance, initial values might be set to (0) logit(.25)ij   if 0ijY   and (0) logit(.75)ij   if 1ijY  .  

The model in Equation (8) is then fit to (0)
ijZ  (e.g., by REML), using (0)

ijw  as an observation 

weight.  The results are used to generate (1)
ij  and (1)

ijZ , and the process is repeated until the 

parameter estimates no longer change. 

 For ordinal data, several additional considerations apply.  First, the model is not fit 

directly to the ordinal variable, but rather to a vector of cumulative binary coding variables 

representing the ordinal scores.  That is, for an ordinal variable Y coded with categories 

1, 2, ,c C  , 1C   binary variables are created such that ( ) 1c
ijY   if ,ijY c  with the last 

category, C, omitted.  The equations provided above still apply, but with ( )c
ijY  as the referent 

dependent variable.  The inverse link in Equation (2) then returns the expected value of ( )c
ijY , 

which is the cumulative probability   ( )c
ij ijP Y c   .  Second, the linear predictor within the 

inverse link function must be augmented to include the threshold parameters.  That is, in the 

above equations, ij  is replaced by ( )c
ij   where ( )c  is a threshold parameter.  Third, the 

1C   binary values constructed to represent each ordinal score ijY  are not independent.  

Specifically,    ( ) ( ) ( ) ( ), 1c c c c
ij ij ij ijCOV Y Y      for c c  (McCullagh & Nelder, 1989, p. 167).  

The working variate scores must therefore be treated as correlated when fitting the linearized 

model. 
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