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Theoretical Motivation
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“There are gophers, 

there are chipmunks, 

but there are no gophmunks.” 

(Meehl, 1994)

“…temporary versus persistent antisocial persons constitute… 
two qualitatively distinct categories of individuals, each in need 
of its own distinct theoretical explanation.”  

(Moffitt, 1993)

Explication of Growth Mixture Model

A Simple Mixture Problem
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Two-Component (Class) Univariate Normal Mixture

Want to know:

-- how many latent classes are there?

-- what proportion of cases arises from      
each class?

-- what are the means and variances of
the class distributions?

Properties of Normal Mixtures

Properties of Finite Normal Mixtures

• A finite mixture of normal distributions is necessarily non-normal 
(except under trivial circumstances)

• Non-normality does not necessarily imply a mixture of normals

“The question may be raised, how are we to discriminate between 
a true curve of skew type and a compound curve [or mixture].”

Pearson (1895, p. 394):
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From Univariate to Longitudinal

Growth Mixture Models

(1) Extend from a univariate to a multivariate mixture model

(2) Each class distribution characterized by a mean vector and 
covariance matrix

(3) The within-class mean vectors and covariance matrices are 
structured by a latent curve model
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Empirical Example

Description of Example

• NLSY Child Sample

• Two cohorts of children
-- children in first grade in 1988 (1988 Cohort, N=548)
-- children in first grade in 1990 (1990 Cohort, N=439)

• Dependent Variable: Reading Recognition (PIAT)

• Up to 4 biennial assessments from first to seventh grade
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Modeling Goals

(1) Determine optimal number of latent classes for 1988 
Cohort

(2) Evaluate growth mixture model results for 1988 Cohort

(3) Replicate substantive results with 1990 Cohort

(4) Draw conclusions with respect to possibly distinctive 
developmental pathways

1988 Cohort Analyses
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Latent Trajectory Classes
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1990 Cohort Replication Analyses
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Inferences

(1) Degree of replication is impressive, especially given inductive nature 
of the methodology

(2) Two trajectory classes appear optimal

(3) Minority class has higher and more steeply increasing reading scores 
than majority class

(4) Does this mean that there are two distinct developmental pathways 
in the population?  NOT NECESSARILY

Threats to Inference of Heterogeneity

(1) Inference relies on the assumption that the observed non-normality 
in reading scores is due to the mixture of unobserved group 
distributions.

(2) Other possible sources of non-normality for this data:
-- Use of percent correct scores (bounded by 0,100 and maybe not interval-
level scale)
-- Data not obtained as a simple random sample.
-- More?

(3) Latent trajectory classes may serve only to approximate non-
normality due to these other sources

Conclusions

Conclusions

• Many theories posit the existence of population sub-groups with 
qualitatively distinct developmental pathways

• Growth mixture models offer a new opportunity to evaluate these 
theories

• A key assumption is that non-normality reflects the mixture of 
unobserved groups, and is not due to other sources

• Analyses on reading achievement point to both the promise of 
growth mixture models for identifying heterogeneity and the caution 
that must be exercised in interpreting their results.


