### A Person-Centered Approach to Modeling Complex Interactions

Daniel J. Bauer North Carolina State University

Michael J. Shanahan University of North Carolina at Chapel Hill

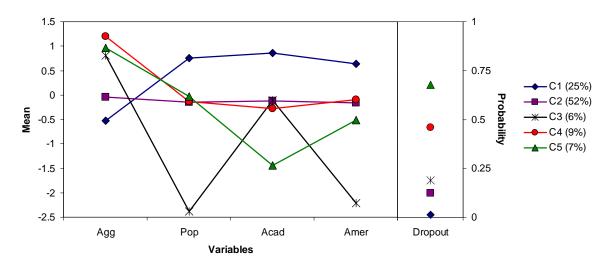
March 6, 2004

### **Motivation**

• Developmental systems theory posits a high degree of interaction between factors both within the person and between person and context in the prediction of outcomes.

- Magnusson, Cairns, & Bergman argue that linear models are
  - insensitive to interactions
  - require unrealistic assumptions (e.g., linearity, bilinearity)
  - do not facilitate holistic interpretations in terms of the actual patterns of functioning that characterize individuals
- They argue that "person-centered methodology" is more consistent with systems theory.

# A Case Study


- Simulated N=2000 to resemble CLS data (Cairns et al. 1989).
- Four continuous predictors from 7<sup>th</sup> grade: Aggression, Academics, Popularity, "All-American"
- One dichotomous outcome: Dropout by the 11<sup>th</sup> grade.
- Hypothesized that the predictors may interact with one another to predict dropout

(e.g., the effect of aggression may depend on other social competencies).

### **The Person-Centered Approach**

• Conducted a Latent Profile/Class Analysis of the four continuous predictors and the binary outcome variable.

• Estimated five latent classes, labeled C1-C5



# **Critique of Person-Centered Approach**

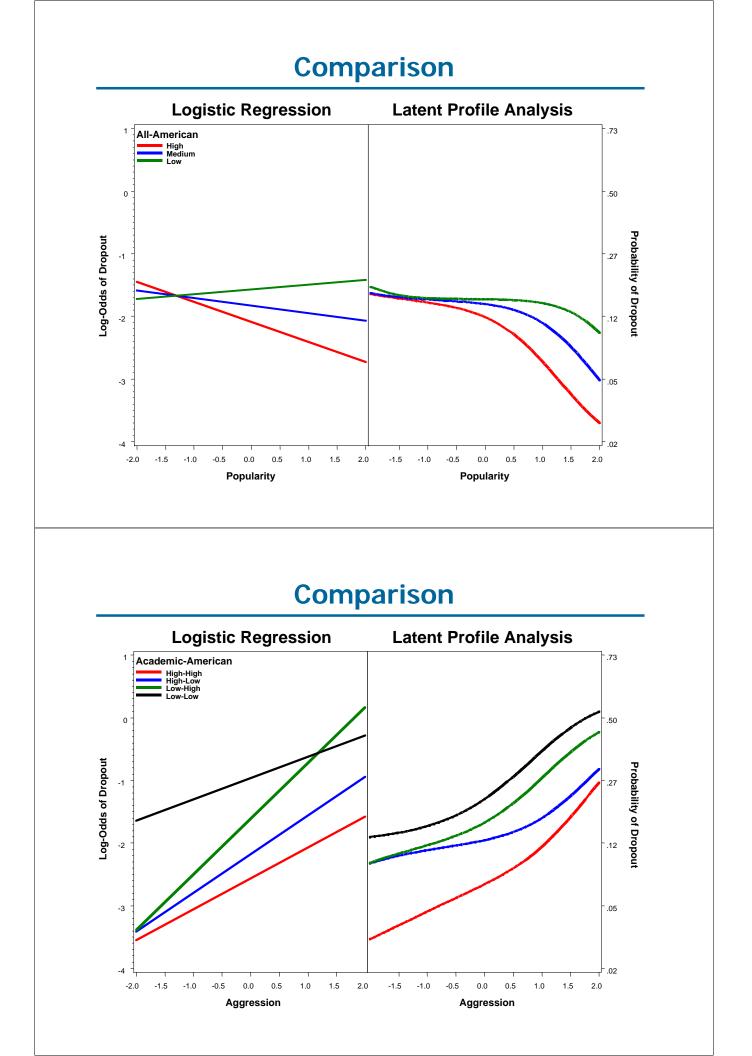
- Normally, analysis stops with consideration of profiles.
- Profiles facilitate holistic interpretations, but...
  - Only 5 configurations for predictors.
  - Only 5 predicted probabilities of dropout.
  - Are interactions really being captured?

I now show how these criticisms can be addressed.

### **Recovering Continua from Categories**

• The probability of dropout for each individual *i* given his/her values on the continuous predictors  $\mathbf{x}_i$  is:

$$\tau_i = \sum_{k=1}^{K} p_{ik}(\mathbf{x}_i) \tau_k$$


Where

 $au_i$  is the probability of dropout for person *i*,

 $\tau_k$  is the probability of dropout for class k,

 $p_{ik}(\mathbf{x}_i)$  is the probability that person i belongs to class k given the data  $\mathbf{x}_i$ 

• We can now generate the predicted probability of dropout for any combination of values on predictors.



# **Conclusions and Future Directions**

- The use of person-centered methods <u>does not</u> preclude capturing <u>continuous</u> relations / interactions.
- Person-centered methods identify salient configurations one need not specify ad hoc configurations to probe effects.
- The potential of person-centered methods to capture complex interactions should be explored more deeply:
  - Performance?
  - Where is Development?
  - Where is Context?