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A key focus of developmental science is the study of individual differences in developmental 
trajectories.  Two types of models are often used for this purpose: 
• Latent curve models (LCM) � Estimate quantitative variations in continuously distributed 

trajectory parameters. 
• Growth mixture models (GMM) � Estimate latent classes of individuals whose trajectories 

differ in qualitatively important ways. 
The relationship between these models can be clarified by writing the density function for the GMM 
as 
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where πk represent the proportion of cases from class k, and θk are the growth parameters that define 
the trajectory �k for each class k.  This model reduces to the LCM when K = 1. 
This poster investigates several critical issues raised by these alternative models: 
• Can data screening guide the selection of an LCM or GMM model? 
• Can model misspecification be detected using traditional fit statistics? 
• How will model misspecification effect the estimation and interpretation of the model 

parameters? 
 

Method 
Design Factors  
• The true number of growth functions in the population (K = 1 or 3) 
• The model estimated for the data (LCM or GMM) 
• The type of growth model fit to the data (Unconditional or Conditional) 
 
Data Generation 
• Multiclass (K = 3) and Single Class (K = 1) data were generated with Mplus. 

o The Multiclass data sets both combined an equal number of cases from each of the 
three trajectories displayed in Figure 1.   

o The Single Class data was generated only from the trajectory of Group 2. 
• Each set included 6000 cases so the results would reflect asymptotic behavior. 
• Two time-invariant predictors (X1-X2) were generated so that their relations to the trajectory 

parameters would vary across classes. 
 

Results 
Data Screening 
• Histograms of Y1-Y4 are presented in Figure 2 for the Multiclass data.   

o The distributions appear normal at all time points except Y4.   
• Histograms of individual parameter estimates (generated by case-wise OLS) for the Multiclass 

data are presented in Figure 3. 



 

 

o The distributions appear normal. 
• Scatterplots of Y1-Y4 and the OLS parameters (not shown) also appeared bivariate normal. 
 
Model Fit Diagnostics 
• Good fit was obtained for both correct and misspecified LCM models. 

o LCM of Single Class data (K = 1) 
! Unconditional Model:  χ2(1) = .23, p = .63; RMSEA = .00 
! Conditional Model:  χ2(3) = 1.42, p = .70; RMSEA = .00 

o LCM of Multiclass data (K = 3) 
! Unconditional Model:  χ2(1) = .13, p = .72; RMSEA = .00 
! Conditional Model:  χ2(3) = 1.68, p = .64; RMSEA = .00 

• GMM models (K = 2 & 3) fit to the single class data consistently iterated to a solution in which 
the �extra� groups had estimated sample sizes of 0. 

• Fit statistics (BIC and AIC) for the GMM models fit to the Multiclass data are presented in 
Figure 4. 

o BIC & AIC suggested 2 rather than 3 groups for the unconditional models. 
o Discrimination of the 3 groups is improved with the inclusion of predictors.  

 
Impacts of Misspecification 
• Incorrectly specifying too many groups in a GMM analysis had no adverse effects on parameter 

estimates, as the �extra� groups had zero estimated members. 
• Figure 5 presents the mean trajectories estimated for the Multiclass data when too few groups 

were specified. 
o The LCM (K = 1) model essentially averaged the three trajectory classes 
o The GMM (K = 2) model essentially merged groups 1 and 2 

• In the conditional models, the effects of the predictors on the growth factors were similarly 
averaged as the groups were combined. 

 
Conclusions 

• Can data screening guide the selection of an LCM or GMM model? 
o Neither the distributions of the observed variables nor those of the growth parameters 

conveyed the presence of multiple trajectory classes. 
o Data screening may be more informative as the trajectory classes become more 

distinctive and the variance within classes decreases. 
• Can model misspecification be detected using traditional fit statistics? 

o Misspecifying an LCM model for Multiclass data was not detectable using traditional 
model fit statistics. 

o BIC & AIC did not always lead to selection of the correct number of groups. 
! Including predictors in model helped to discriminate the groups. 

• How will model misspecification effect the estimation and interpretation of the model 
parameters? 

o Estimating a GMM with more classes than necessary had no harmful effects, and 
pointed toward simplifying the model to the correct form. 
! The effect of this type of misspecification would probably be greater under 

less ideal conditions (e.g, when single class data are skewed). 
o When too few groups were specified, the most similar groups collapsed together, 

obscuring their distinctive trajectories and relations to predictors. 
 
 



 

 

Figure 1.  Trajectories used for Data Generation 
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Figure 2.  Univariate Distributions of Y1–Y4 For Multiclass Data 
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Figure 3.  Distributions of Growth Parameters For MultiClass Data 
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Figure 4.  Fit Statistics for GMM Models 
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Conditional GMM
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Figure 5.  Misspecified Model Implied Trajectories for 
Multiclass Data 
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GMM (K=2) of Multiclass Data
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