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Outline 
 
 

• Describe Motivation 

• Introduce Multilevel Linear Model (MLM) 

• Show that MLM can be estimated as SEM 

• Show that we can extend MLM within SEM 
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Motivation 
 
 
Stengths/Limitations of MLMs 

• Optimal For 

o Obtaining correct SEs for nested data 

o Estimating & predicting random effects 

• Difficult For 

o Estimating measurement models 

o Obtaining explicit tests of mediation 

 

Strengths/Limitations of SEM 

• Opposite of above 

 

 

Goals are to combine the strengths of the two 

models and bridge modeling traditions 
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A 2-Level MLM w/ L1 Covariates 
 
 

Level 1 Model 
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Level 2 Model 
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A 2-Level MLM w/ L1 Covariates 
 
 

Reduced-Form Equation 

 
 

 

 

 

 

This is a special case of the linear mixed-effects 

model of Laird & Ware (1982) 

 

 

where  

   Xj is the design matrix for the fixed effects ββββ    
   Zj is the design matrix for the random effects uj 

 

implying that 

yj MVN Xj ,Zj TZj ´ rj  
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From MLM to SEM 
 
 

In our case, Xj = Zj, so  

yj MVN Xj ,XjTXj´ rj  
 

 

Further, if the design is balanced then Xj = X  
and 

yj MVN X ,XTX´ r  
 

 

This is the same structure as a CFA model where 
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A Classic Case:  The Growth Model 
 
 

Multilevel Linear Growth Model 

    Level 1: 

     
     

    Level 2:  

 
 

Linear Latent Curve Model in SEM 
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  Xi = X = Λ Λ Λ Λ because assuming balanced design. 
  Random coefficients are represented as latent variables.  
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Balanced Data 
 
Example 

3 male & 3 female students per school to evaluate effect of 

sex on language ability 
 

Multilevel Linear Model 

Level 1: 

Level 2:  

 

Equivalent SEM 
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Strategies for Imbalanced Data 
 

Treat as missing  

• Construct complete-data )(ˆ),(ˆ θµθΣ  

• Compare each yj to submatrices jj )(ˆ,)(ˆ θµθΣ  

 
Example:  M = max # male students & F = max # 

female students in any given school. 
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Strategies for Imbalanced Data 
 
 

Compute jj )(ˆ,)(ˆ θµθΣ  directly from ΛΛΛΛj 

• Truer to multilevel approach: ΛΛΛΛj = Xj 

• Xj referred to as definition variables for ΛΛΛΛj 

• Due to Neale 

 

Example:  S = max # students in any given school  

 

 

 

 

 

 

 

 

τ11 τ00 

rS 

σ 

r1 

σ 

r2

σ

r3

σ 

1π0 
(β00) 

Lang2 Lang3 

π1 
(β10) 

τ10 

LangS Lang1 

1 1 sexj 

… 

11 sex2j 
sex3j sexSj



Bauer & Curran, Psychometric Society Paper Presentation, 6/21/02 

What to do if you’re imbalanced? 
 

 

Both approaches provide computationally equivalent 

results but 

• Strategy 1 is better for few discrete covariates & 

complex residual structures. 

• Strategy 2 is better for continuous covariates 

(highly imbalanced data) & homogeneity of error 

variance. 
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Adding Higher-Level Predictors 
 

Adding Level 2 Covariates 

Problem is Xj ≠ Zj but one ΛΛΛΛj 
 

 

Rovine & Molenaar Solution: 

• Fixed effects factors have means, no variance 

• Random effects factors have variance, no means 

• Define ΛΛΛΛj = BLOCK(Xj , Zj) 
• True to mixed-effects model, non-intuitive. 

 
 

Alternative Solution: 

• Extends approach used w/ latent curve models 

• L2 predictors are ‘fixed X’ covariates 

o Effects contained in ΓΓΓΓ 

• Computationally equivalent to R & M Solution 

 
 

Both solutions can be extended to 3+ Level models 
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Expanding the Model:  
A New Approach to Multilevel CFA 

 

 

Adding a measurement model for item level outcomes 

 

Example:  

Data from High-School & Beyond: Teacher Survey 

• 456 schools; 10,365 teachers 

o Imbalanced: # teachers/school ranges from 1 to 30 

o Let max # teachers = T = 30 

• 9 item measure of teacher perceptions of control 

o 4 items on control of school policy 

o 5 items on control of classroom teaching/planning 

o 6 point Likert scales; Centered at mean 

 

Estimating 2-Factor Model 
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High-School & Beyond 2-Factor Model 
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Empirical Validation 
 
 

Comparing SEM and MLM estimates 

Parameter Multilevel CFA PROC MIXED 
λ1 1.0  1.0
λ2 .9932   (.02342) .9932
λ3 1.1492   (.02508) 1.1492
λ4 1.2867   (.02615) 1.2867
λ5 1.0  1.0
λ6 .9803   (.01746) .9803
λ7 .5444   (.01088) .5444
λ8 .6080    (.01532) .6080
λ9 .4269   (.01047) .4269

Loadings fixed 
to values from 
multilevel CFA  

(Cannot be 
estimated 
directly) 

τw11 .5114   (.01848) .5114   (.01132) 
τw22 .6384   (.01970) .6384   (.01292) 
τw21 .2637   (.01011) .2637   (.00885) 
τB11 .2029   (.01726) .2027   (.01647) 
τB22 .1611   (.01426) .1611   (.01379) 
τB21 .1153   (.01240) .1153   (.01232) 
σ1 1.2579   (.02160) 1.2579   (.02084) 
σ2 1.4890   (.02471) 1.4890   (.02413) 
σ3 1.3828   (.02481) 1.3828   (.02367) 
σ4 1.0047   (.02214) 1.0047   (.02015) 
σ5 .9614   (.01778) .9614   (.01686) 
σ6 .5799   (.01295) .5799   (.01176) 
σ7 .3675   (.00636) .3675   (.00615) 
σ8 1.0119   (.01566) 1.0119   (.01548) 
σ9 .4610   (.00718) .4610   (.00711) 


