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Structural equation models are commonly used to estimate relationships between latent variables.

Almost universally, the fitted models specify that these relationships are linear in form. This

assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques.

This article presents and evaluates two procedures that can be used to visualize and detect non-

linear relationships between latent variables. The first procedure involves fitting a linear structural

equation model and then inspecting plots of factor score estimates for evidence of nonlinearity.

The second procedure is to use a mixture of linear structural equation models to approximate the

underlying, potentially nonlinear function. Targeted simulations indicate that the first procedure is

more efficient, but that the second procedure is less biased. The mixture modeling approach is

recommended, particularly with medium to large samples.
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Structural equation models are commonly used in the social, behavioral, and health sciences

to evaluate the relationships among latent variables that cannot be observed directly or without

measurement error. One traditional assumption of these models is that the latent variables (or

factors) are linearly related to one another. This assumption is rarely overtly scrutinized, either

empirically or theoretically. Indeed, many of the textbooks used to teach structural equation

modeling (e.g., Bollen, 1989; Kaplan, 2000) provide little discussion of the linearity assumption,

or of procedures for diagnosing potentially nonlinear relationships.1 More attention is given

1Kline (2005) is an exception, suggesting that scatter plots between observed variables be inspected for potential

nonlinear trends. The contribution of measurement error to the observed scores might, however, diminish the appearance

of nonlinear trends. Diagnostic procedures that can be applied directly at the level of the latent variables are hence

preferable.

Correspondence should be addressed to Daniel J. Bauer, Department of Psychology, CB#3270, University of North

Carolina, Chapel Hill, NC 27599, USA. E-mail: dbauer@email.unc.edu
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158 BAUER, BALDASARO, GOTTFREDSON

to modeling nonlinear trends using quadratic or product-interaction terms (a topic of intensive

research; e.g., Kenny & Judd, 1984; Klein & Moosbrugger, 2000; Klein & Muthén, 2007, Lee,

Song, & Tang, 2007; Marsh, Wen, & Hau, 2004; Schumacker & Marcoulides, 1998), but the

use of these models presumes prior knowledge of the nature of the relationship. Further, tests

of model fit are unlikely to prompt reexamination of the linearity assumption, as these tests

are insensitive to the presence of nonlinear effects (Mooijaart & Satorra, 2009).

The notable absence of coverage of linearity diagnostics in structural equation modeling

texts contrasts with the prominence of this topic in textbooks on regression models for observed

variables (e.g., Cohen, Cohen, West, & Aiken, 2003; Neter, Kutner, Nachtsheim, & Wasserman,

1996). For instance, Cohen et al. (2003) noted that

Unless there is strong theory that hypothesizes a particular form of nonlinear relationship, most

researchers begin by specifying linear regression models: : : : However, there is no guarantee that

the form of the relationship will in fact be linear. Consequently, it is important to examine graphical

displays to determine if a linear relationship adequately characterizes the data. (p. 125)

In particular, the nonparametric locally weighted regression, or loess, procedure can be useful

for visualizing and modeling nonlinear effects when the functional form of the relationship is

unknown (Cleveland, 1993; Cleveland, Devlin, & Grosse, 1988).

There is little reason to believe that nonlinear effects are less common for latent than

observed variables. If anything, nonlinear effects might be harder to visualize and detect with

observed variables due to contamination by measurement error. It would therefore seem that the

absence of discussion of techniques for detecting nonlinear effects in latent variable models has

more to do with the fact that few techniques have been proposed or evaluated for this purpose.

It is our goal here to present and compare two such techniques and to make recommendations

for their use in practice.

The first technique we consider is to generate estimated scores for the latent variables, en-

abling the application of diagnostic procedures used with observed-variable regression models.

This idea is hardly novel. A little over four decades ago, McDonald (1967) suggested visually

inspecting plots of factor score estimates to judge whether indicators are linearly related to

factors. A similar procedure could be used to judge whether factors are linearly related to one

another. One would follow these steps:

1. Fit a linear structural equation model to the data.

2. Generate factor score estimates from the fitted model.

3. Plot the factor score estimates for each factor against the others.

4. Superimpose a scatterplot smoother (e.g., loess regression line) on the plots to aid in

visually discriminating nonlinear trends.

We refer to this approach henceforth as FS-SM (factor scores with smoothing).

Although straightforward in implementation, there is reason to believe that FS-SM might

produce misleading evidence in favor of adopting the linear model. Let us suppose that there is,

in fact, a nonlinear relationship between two latent variables. The model fit in Step 1 incorrectly

assumes the relationship to be linear, and it is this model that is used to generate factor score

estimates in Step 2. The true nonlinear trend might then be attenuated in the factor score
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DETECTING NONLINEAR RELATIONSHIPS 159

estimates due to the initial misspecification of the model as linear. Indeed, for at least some

methods of factor score estimation, this is necessarily true.

Consider factor score estimates generated by the regression method (Thomson, 1936, 1951;

Thurstone, 1935). As noted by Bartholomew and Knott (1999), the regression method yields

scores that are equivalent to empirical Bayes’s estimates. Like all empirical Bayes’s estimates,

the estimated scores are shrunken toward the empirical prior distribution; that is, the distri-

bution of the latent variables in the fitted model. Because the fitted model assumes a linear

relationship between the latent variables, the factor score estimates will be shrunken toward

the linear prior (and away from the true nonlinear relationship). The extent to which the

scores are shrunken toward the prior depends on the level of factor determination (i.e., the

informativeness of the observed data). As such, regression method estimates can be expected

to reveal nonlinear trends with greater fidelity as the number and communality of the measured

variables for the factors increases. With less informative measured variables, however, nonlinear

relationships can be occluded. Many other methods of factor score estimation have also been

proposed, but these tend to generate scores that are highly correlated with regression method

estimates (Fava & Velicer, 1992), and hence are likely to perform similarly to the regression

method.

Ideally, a diagnostic procedure for detecting nonlinear effects should not be biased against

finding them. We thus also consider a newer, model-based procedure for semiparametrically

estimating nonlinear latent variable relationships of unknown form (Bauer, 2005; Pek, Sterba,

Kok, & Bauer, 2009). This approach involves fitting a finite mixture of K linear structural

equation models to the data. The relationship between the latent variables is specified as linear

within each of the K mixing components (sometimes referred to as latent classes). Although

the relationship is locally linear within each component of the mixture, aggregating across

components provides a smoothed estimate of the underlying nonlinear trend. For instance,

suppose that we were to estimate a two-component mixture and found that in the first class

the latent variables have low means and a positive linear relationship, whereas in the second

class the latent variables have higher means and no linear relationship. The smoothed function

would then travel from the positively sloped relationship in Class 1 at low values to the null

relationship in Class 2 at high values to produce an asymptotic curve. No prior knowledge of

the shape of the function is required. Accordingly, we refer to this approach as semiparametric

modeling (SPM).

Simulations suggest that SPM can accurately recover nonlinear relationships between latent

variables. Thus, one potential advantage of SPM relative to FS-SM is that SPM does not

produce a confirmation bias for the linear model. One potential disadvantage of SPM is that

structural equation mixture models require the estimation of more parameters than conventional

structural equation models, potentially resulting in higher sampling variability for SPM than

FS-SM.

We compare the performance of these two possible diagnostic strategies using simulation

methodology. Our specific hypotheses are as follows:

1. Factor score estimates will generally show greater bias than mixture estimates, although

the performance of factor score estimates will improve as the number of manifest

variables and their communalities increase.

2. Mixture estimates will often show greater sampling variability than factor score estimates.
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160 BAUER, BALDASARO, GOTTFREDSON

This potential trade-off between bias and efficiency will be evaluated with an eye toward

making recommendations for which procedure is most likely to be useful in practice. To test

our hypotheses, we conducted two targeted simulation studies in which we manipulated the

form and magnitude of the true nonlinear relationship, the number of manifest variables per

factor, the communalities of the manifest variables, and the sample size. Study 1 evaluated

the performance of the two procedures for quadratic functions, for which the magnitude of

nonlinearity can be easily manipulated and quantified. To illustrate the general applicability

of these methods, Study 2 focused on the recovery of two alternative, asymmetric nonlinear

functions.

STUDY 1

As noted earlier, Study 1 examined the performance of FS-SM and SPM in recovering quadratic

latent variable regression functions. Quadratic functions were chosen because they are perhaps

the most common functions used to model nonlinearity in observed-variable regression models

and because they have properties that are convenient for simulating data (e.g., analytically

determined variance expressions, and quantifiable curvature parameters). The FS-SM and

SPM approaches were applied to the simulated data without incorporation of any knowledge

regarding the nature of the relationship between the factors. The goal was to recover the shape

of the true, underlying function.

Simulation Design and Data Generation

Each model contained one latent predictor and one latent outcome variable, with 50% of the

total variance in the latent outcome explained by the latent predictor via a quadratic relationship.

We implemented a factorial design crossing the magnitude of the quadratic effect (medium or

large), sample size (N D 250, 500, or 1,000), number of observed indicator variables per factor

(three or six), and communalities of the indicators (h2 D :25, .50, or .75). For each of the 36

conditions 250 data sets were generated in SAS.

Data generation proceeded in two steps. First, data were generated from the latent variable

model

˜1i D —1i

˜2i D 4:85 C :5˜1i � :35˜2
1i C —2i

or

˜2i D 5 � :5˜2
1i C —2i

for the medium and large quadratic effect conditions, respectively, where i D 1; 2; : : : ; N . The

disturbances —1i and —2i were sampled from a bivariate normal distribution with zero means

and covariance matrix

‰ D

�

1 0

0 :5

�
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DETECTING NONLINEAR RELATIONSHIPS 161

FIGURE 1 Target functions used in the simulation study.

In both the medium and large quadratic effect conditions, these values imply that ˜1 and ˜2

have marginal variances of 1 and that 50% of the variance in ˜2 is explained by ˜1. In the large

quadratic condition, all of the explained variance is due to the quadratic effect, whereas in the

medium quadratic effect condition only half of the explained variance is uniquely attributable

to the quadratic effect. The two functions can be compared visually in Figure 1.

Second, for each factor, data were generated for three or six indicator variables via the

following measurement model:

y1i D 1˜1i C ©1i

y2i D 1˜2i C ©2i

These equations imply that the intercepts for all of the indicators are zero and that each indicator

loads on one and only one factor with a factor loading of one. The residuals (contained in ©1i

and ©2i ) were normally distributed with zero means and a diagonal covariance matrix. The

residual variance was held constant across indicators at 3, 1, or .333 to produce the desired

communalities of h2 D :25, .50, or .75, respectively.

Implementation of Diagnostic Procedures

For each data set, both the FS-SM and SPM approaches were used to evaluate the linearity of

the relationship between ˜1 and ˜2. All models were fit in Mplus 5.1. Maximum likelihood

estimation for finite mixture models is prone to local solutions, hence solutions were obtained
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162 BAUER, BALDASARO, GOTTFREDSON

from 500 random starts for each of the first 50 replications per condition. The solution with

the highest likelihood for each replication was selected, and then parameter estimates were

averaged over replications (with care taken to avoid label switching across replications). The

average values were then used as start values for the remaining 200 replications per condition.

FS-SM. Factor score estimates were computed by first fitting a standard structural equation

model to the data in which the relationship between ˜1 and ˜2 was assumed to be linear.

Each indicator variable was permitted to load only on the appropriate factor and the model

was identified by setting the intercept and factor loading of the first indicator variable for

each factor to zero and one, respectively, while estimating the remaining intercepts and factor

loadings. The resulting parameter estimates (and observed data) were then used to produce

factor score estimates via several different methods: the regression method (Thomson, 1936,

1951; Thurstone, 1935), Bartlett’s generalized least squares method (Bartlett, 1937), and the

constrained scores method of Anderson and Rubin (1956), as extended to correlated factor

models by McDonald (1981; hereafter referred to as constrained covariance), with the idea of

determining which set of estimates performs best when the goal is to detect nonlinear trends.

The formulas used to generate the factor score estimates are provided in Appendix A, and

were implemented within the SAS IML procedure (SAS Institute, 2008a). For each of the

three sets of factor scores, we then ran a loess regression (Cleveland, 1993; Cleveland et al.,

1988), as implemented within the LOESS procedure of SAS (SAS Institute, 2008b, pp. 3187–

3254), to obtain a smoothed nonparametric estimate of the underlying regression function. The

smoothing parameter was chosen by the default method, to minimize the corrected Akaike’s

Information Criterion (AIC; Hurvich, Simonoff, & Tsai, 1998).

SPM. The SPM method has been described in detail in Pek et al. (2009), with technical

developments in Bauer (2005). To implement this method, structural equation mixture models

with K components were fit to the data, where the within-component structural equation model

specification was the same as described earlier for the FS-SM method. The smoothed nonlinear

aggregate regression function was then generated from the model estimates obtained for each

replication using formulas given by Bauer (2005), as shown in Appendix B. Pek et al. (2009)

described online utilities that can be used to perform these computations for a given replication

and generate plots of the estimated regression function.

For each replication, K was determined by fitting a sequence of models with increasing

latent classes until the minimum AIC (Akaike, 1973) or Bayes’s Information Criterion (BIC;

Schwarz, 1978) was detected. Both AIC and BIC are commonly used for model selection with

finite mixtures (McLachlan & Peel, 2000), with AIC generally favoring more classes. Of the

two criteria, BIC is generally preferred in direct applications of finite mixtures (where the goal

is to recover the number of true, discrete underlying subpopulations) because it is a consistent

selector of the number of latent classes. In this instance, however, the application is indirect

(there are no discrete subgroups to be found—the mixture is used as an approximation device)

and hence BIC might not necessarily outperform AIC. Aggregate regression function estimates

were thus obtained using both minimum AIC and BIC, with the goal of determining if one

criterion outperforms the other for this type of application.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

or
th

 C
ar

ol
in

a 
- 

C
ha

pe
l H

ill
] 

at
 1

3:
07

 1
8 

Ja
nu

ar
y 

20
13

 



DETECTING NONLINEAR RELATIONSHIPS 163

Evaluation of Diagnostic Procedures

The FS-SM and SPM diagnostic procedures were evaluated by comparing the accuracy and

precision of estimation of the underlying regression function. Because both procedures are

approximations, neither produces estimates of the parameters of the true function, hence

performance cannot be judged by evaluating recovery of the function parameters. Instead,

performance was judged with respect to recovery of the regression function as a whole, as

measured by the bias, standard deviation, and root mean squared error (RMSE) of the function

estimates. Bias measures accuracy, the standard deviation measures (in)efficiency, and the

RMSE incorporates information about both. Computation of these criteria for the regression

function estimates is detailed in Appendix C.

In addition to these numerical criteria, for some conditions we also provide a visual compar-

ison of the performance of the FS-SM and SPM approaches. The average estimated regression

function is overlaid on the true regression function (depicting bias) and the interval enclosing

90% of the estimates at any given point is also shown (depicting sampling variability). Note

that this interval is not a confidence interval, but a sampling interval.

Results

Bias, standard deviation, and RMSE results for the two quadratic functions, with medium and

large quadratic effects, are presented in Tables 1 and 2, respectively. For ease of interpretation,

the lowest bias, standard deviation, and RMSE entries are bolded within Tables 1 and 2 for each

condition. Overall, the pattern of findings was quite consistent across the two functions. First,

one uniform trend was for bias, standard deviation, and RMSE to decrease as the communality

of the indicators increased, and as the number of indicators per factor increased; that is, as factor

determinacy increased. This trend was anticipated for FS-SM, but had not been anticipated for

SPM. Second, as hypothesized, SPM was generally less biased than FS-SM, with the lowest

bias in every condition achieved using SPM with the minimum AIC solution. Third, also as

hypothesized, FS-SM was generally more efficient than SPM, with the lowest standard deviation

obtained in nearly every condition using Bartlett’s factor scores. Last, the method with the best

RMSE varied across conditions depending primarily on sample size. At N D 250, the FS-SM

approach resulted in the lowest RMSE in nearly all conditions, with the exception that, for

the medium quadratic effect, the SPM resulted in lower RMSE when h2 D :50. At N D 500,

SPM produced a lower RMSE for both quadratic functions in the h2 D :50 conditions, and also

produced a lower RMSE when h2 D :25 and there were six indicators per factor. Finally, at N D

1,000, SPM produced a lower RMSE in every condition for both functions. This changeover

in rank could be attributed to two sample size effects: More classes could be supported when

using the SPM approach at higher sample sizes, reducing bias, and at the same time higher

sample sizes dampened the relative contribution of sampling variability to RMSE.

In comparing within each diagnostic approach, two additional findings are worth noting.

First, although Bartlett’s method almost always resulted in the lowest standard deviation, no

one factor score estimator consistently resulted in the lowest bias or RMSE. For the most part,

this ambiguity is due to the quite similar performance of the different factor score estimators.

Similarly, although SPM with the minimum AIC solution always resulted in the lowest bias, the

minimum BIC solution was more efficient and quite often produced a lower RMSE. Given the
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164 BAUER, BALDASARO, GOTTFREDSON

TABLE 1

Results for Quadratic Target Function: Medium Quadratic Effect

3 Indicators 6 Indicators

h2 Method Bias SD RMSE Bias SD RMSE

N D 250

.25 FS-SM R .293 .301 .420 .224 .226 .318

FS-SM B .350 .201 .404 .270 .191 .331
FS-SM C .270 .251 .369 .242 .208 .319
SPM AIC .157 .427 .455 .053 .376 .380

SPM BIC .306 .330 .450 .135 .337 .363
.50 FS-SM R .177 .172 .246 .118 .158 .197

FS-SM B .213 .150 .260 .139 .147 .202

FS-SM C .222 .170 .280 .194 .168 .256
SPM AIC .041 .241 .245 .029 .227 .229
SPM BIC .077 .227 .240 .070 .181 .194

.75 FS-SM R .087 .130 .156 .060 .128 .142
FS-SM B .093 .127 .157 .059 .128 .141

FS-SM C .183 .147 .235 .183 .146 .234
SPM AIC .015 .179 .180 .020 .152 .153
SPM BIC .065 .147 .161 .067 .143 .158

N D 500

.25 FS-SM R .290 .207 .356 .221 .176 .283
FS-SM B .375 .136 .399 .293 .142 .326

FS-SM C .281 .170 .329 .258 .155 .301
SPM AIC .074 .363 .371 .043 .342 .344
SPM BIC .190 .315 .368 .086 .220 .236

.50 FS-SM R .171 .133 .216 .117 .119 .167
FS-SM B .221 .111 .248 .138 .114 .179

FS-SM C .229 .126 .262 .204 .124 .239
SPM AIC .034 .242 .245 .019 .164 .165
SPM BIC .072 .163 .178 .061 .141 .154

.75 FS-SM R .082 .102 .131 .060 .093 .111
FS-SM B .095 .099 .138 .053 .093 .107

FS-SM C .191 .113 .222 .188 .105 .216

SPM AIC .014 .128 .129 .015 .107 .108
SPM BIC .057 .118 .131 .041 .112 .119

N D 1,000

.25 FS-SM R .307 .161 .346 .221 .135 .259
FS-SM B .385 .103 .399 .284 .106 .304
FS-SM C .287 .129 .314 .252 .120 .279

SPM AIC .059 .306 .312 .038 .242 .245
SPM BIC .091 .258 .273 .074 .165 .181

.50 FS-SM R .168 .096 .194 .100 .092 .136
FS-SM B .231 .086 .246 .135 .086 .160
FS-SM C .236 .093 .254 .203 .092 .223

SPM AIC .022 .158 .160 .010 .120 .121
SPM BIC .064 .130 .145 .029 .117 .120

.75 FS-SM R .077 .078 .109 .049 .074 .089

FS-SM B .095 .074 .121 .050 .072 .087
FS-SM C .196 .086 .213 .192 .092 .213
SPM AIC .012 .094 .095 .010 .080 .081

SPM BIC .028 .097 .101 .028 .081 .086

Note. h2
D communality; SD D standard deviation; RMSE D root mean squared error; FS-SM R D factor

scores with smoother, regression method; B D Bartlett’s method; C D constrained covariance method; SPM AIC D

semiparametric method, minimum Akaike’s Information Criterion solution; BIC D minimum Bayes’s Information
Criterion solution. The entry with the lowest bias, SD, or RMSE within a given condition is shown in bold.
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DETECTING NONLINEAR RELATIONSHIPS 165

TABLE 2

Results for Quadratic Target Function: Large Quadratic Effect

3 Indicators 6 Indicators

h2 Method Bias SD RMSE Bias SD RMSE

N D 250

.25 FS-SM R .352 .288 .455 .293 .246 .383

FS-SM B .359 .201 .411 .291 .208 .358

FS-SM C .360 .226 .425 .292 .214 .362
SPM AIC .231 .466 .520 .054 .542 .544

SPM BIC .387 .347 .520 .090 .401 .411
.50 FS-SM R .210 .208 .295 .143 .190 .238

FS-SM B .245 .169 .298 .145 .175 .227

FS-SM C .232 .176 .292 .147 .178 .230
SPM AIC .048 .320 .324 .032 .262 .264
SPM BIC .092 .288 .303 .066 .230 .239

.75 FS-SM R .111 .149 .186 .076 .142 .161
FS-SM B .117 .141 .183 .070 .138 .154

FS-SM C .122 .142 .187 .093 .158 .184
SPM AIC .028 .203 .205 .028 .167 .170
SPM BIC .065 .192 .202 .062 .174 .184

N D 500

.25 FS-SM R .351 .210 .409 .276 .179 .329
FS-SM B .377 .136 .401 .312 .147 .345

FS-SM C .357 .155 .389 .284 .151 .322
SPM AIC .116 .559 .571 .033 .372 .373
SPM BIC .206 .528 .567 .065 .289 .297

.50 FS-SM R .213 .149 .260 .138 .145 .200
FS-SM B .253 .124 .281 .160 .131 .207

FS-SM C .224 .126 .257 .145 .133 .196
SPM AIC .028 .231 .233 .019 .194 .196
SPM BIC .048 .214 .219 .044 .186 .191

.75 FS-SM R .099 .116 .152 .060 .113 .128
FS-SM B .118 .109 .161 .063 .110 .127

FS-SM C .106 .121 .161 .066 .128 .144

SPM AIC .022 .153 .154 .023 .129 .131
SPM BIC .046 .149 .156 .047 .128 .137

N D 1,000

.25 FS-SM R .354 .155 .387 .267 .144 .304
FS-SM B .400 .105 .413 .326 .114 .345
FS-SM C .366 .114 .384 .280 .124 .306

SPM AIC .038 .394 .396 .026 .293 .294
SPM BIC .074 .332 .340 .050 .231 .236

.50 FS-SM R .208 .114 .237 .128 .110 .169
FS-SM B .270 .093 .286 .168 .099 .195
FS-SM C .225 .095 .244 .137 .103 .172

SPM AIC .029 .177 .180 .020 .141 .142

SPM BIC .049 .163 .170 .045 .136 .143
.75 FS-SM R .097 .088 .131 .058 .087 .104

FS-SM B .121 .083 .147 .066 .084 .107
FS-SM C .103 .090 .137 .061 .100 .117
SPM AIC .021 .109 .111 .022 .094 .010

SPM BIC .046 .110 .119 .041 .102 .110

Note. h2
D communality; SD D standard deviation; RMSE D root mean squared error; FS-SM R D factor

scores with smoother, regression method; B D Bartlett’s method; C D constrained covariance method; SPM AIC D

semiparametric method, minimum Akaike’s Information Criterion solution; BIC D minimum Bayes’s Information
Criterion solution. The entry with the lowest bias, SD, or RMSE within a given condition is shown in bold.
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166 BAUER, BALDASARO, GOTTFREDSON

FIGURE 2 Target function is quadratic with large quadratic trend, N D 250, six indicators, and communality

of .50; the shaded region is the 90% sampling interval, the bold solid line is the mean estimate, and the bold

dashed line is the true function. FS-SM D factor scores with smoothing; SPM D semiparametric modeling

using a finite mixture of linear structural equations; AIC D Akaike’s Information Criterion; BIC D Bayesian

Information Criterion.

more conservative nature of the BIC criterion, this is not surprising. With fewer classes selected

by BIC than AIC, fewer parameters are estimated, resulting in less flexibility to capture the

underlying function (more bias) but also less sampling variability (lower standard deviation).

Figures 2 and 3 communicate these findings visually. Figure 2 depicts the results from

the large quadratic function with h2 D :50, six indicators per factor, and N D 250, whereas

Figure 3 is for the same conditions at N D 1,000. Note that the mean estimated regression

function (bold line) follows the underlying function (dashed line) quite closely when using

SPM with minimum AIC, the method with the least bias. SPM with minimum BIC is the

second least biased method, because the mean estimated regression function follows the true

function quite closely between �2 and 2, where 95% of the mass of the predictor distribution

lies. The FS-SM approach is most biased because the mean estimated regression function is

more linear than it should be, shrinking both the tails and the peak of the quadratic function.
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DETECTING NONLINEAR RELATIONSHIPS 167

FIGURE 3 Target function is quadratic with large quadratic trend, N D 1,000, six indicators, and

communality of .50; the shaded region is the 90% sampling interval, the bold solid line is the mean estimate,

and the bold dashed line is the true function. FS-SM D factor scores with smoothing; SPM D semiparametric

modeling using a finite mixture of linear structural equations; AIC D Akaike’s Information Criterion; BIC D

Bayesian Information Criterion.

Also note that the intervals for the estimates are narrower for the FS-SM methods, indicating

their greater efficiency. For N D 250, depicted in Figure 2, this greater efficiency was sufficient

to make FS-SM with Barlett’s method the lowest RMSE approach, whereas for N D 1,000,

depicted in Figure 3, SPM with the minimum AIC solution produced the lowest RMSE.

Overall, the bias–efficiency trade-off is clearly evident in these results. The SPM method

using the minimum AIC solution produces the least bias but is also least efficient. The FS-SM

approach provides greater efficiency, but is the most biased. Finally, the SPM method using

the minimum BIC solution occupies a middle ground, more biased than AIC but less so than

FS-SM, and less efficient than FS-SM but more efficient than SPM with AIC. With small

sample sizes, the FS-SM approach tends to result in lower RMSE, whereas with large samples

the SPM approach always produces the lowest RMSE.
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168 BAUER, BALDASARO, GOTTFREDSON

STUDY 2

To probe the generality of the results obtained in Study 1 beyond solely quadratic functions,

Study 2 was conducted using simulated data from two asymmetric nonlinear functions, a

negatively accelerated exponential function and a quadratic spline. Because Study 1 indicated

that sample size was the single largest determinant of the relative ranking of FS-SM and SPM

approaches, sample size was again varied in Study 2, but the number of observed indicator

variables and their communalities were held constant at six indicators per factor with h2 D :5.

Simulation Design and Data Generation

Data were generated as described for Study 1, but with the exception that the function relating

˜2 to ˜1 was either specified as a negatively accelerated exponential function

˜2i D 5 C :04.1 � e�1:5˜1i / C —2i

or as a quadratic spline producing an asymmetric concave-down curve:

˜2i .˜1i < 0/ D 5 C :1˜1i � :3˜2
1i C —2i

˜2i .˜1i > 0/ D 5 C :1˜1i � :1˜2
1i C —2i

For visual comparison, these two functions are depicted alongside the quadratic functions in

Figure 1. As in Study 1, 50% of the variance in the latent outcome was explained by the

latent predictor. Again, 250 samples were generated for each condition (N D 250, 500, or

1,000). FS-SM and SPM procedures were applied to each sample as described in Study 1, and

similarly evaluated on the basis of bias, standard deviation, and RMSE, in addition to visual

depictions of performance.

Results

Tables 3 and 4 present the results for the negatively accelerated exponential function and

quadratic spline function, respectively. Consistent with Study 1, for both functions, SPM

with the minimum AIC solution consistently yielded the lowest bias. For the quadratic spline

function, the FS-SM approach also again consistently produced the lowest standard deviation,

although in this case the constrained covariance factor scores outperformed Bartlett’s scores at

N D 500 and N D 1,000. In contrast, for the negatively accelerated exponential, the lowest

standard deviation was obtained at all sample sizes using SPM with the minimum BIC solution.

For both functions, SPM tended to produce the lowest RMSE. For the quadratic spline, the

lowest RMSE was obtained at all sample sizes using SPM with the minimum BIC solution. For

the negative exponential, the lowest RMSE was obtained using SPM with the minimum AIC so-

lution, except at N D 250, in which case FS-SM with Bartlett’s scores produced a lower RMSE.

The performance of the different methods for the negative exponential and quadratic spline

functions can also be assessed visually in Figures 4 and 5, respectively, plotted at N D

500. As can be seen, for both functions SPM with minimum AIC is least biased, but this
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TABLE 3

Results for the Negatively Accelerated Exponential Function

Performance Criteria

Method Bias SD RMSE

N D 250

FS-SM R .054 .150 .159
FS-SM B .050 .110 .120

FS-SM C .070 .148 .164

SPM AIC .034 .124 .129
SPM BIC .068 .107 .127

N D 500

FS-SM R .058 .110 .125
FS-SM B .063 .081 .102
FS-SM C .087 .132 .158

SPM AIC .043 .086 .096

SPM BIC .071 .072 .101

N D 1,000
FS-SM R .062 .085 .105
FS-SM B .068 .072 .099

FS-SM C .091 .067 .113
SPM AIC .043 .062 .075

SPM BIC .067 .055 .086

Note. SD D standard deviation; RMSE D root mean squared error; FS-SM R D factor scores with smoother,

regression method; B D Bartlett’s method; C D constrained covariance method; SPM AIC D semiparametric method,
minimum Akaike’s Information Criterion solution; BIC D minimum Bayes’s Information Criterion solution. The entry
with the lowest bias, SD, or RMSE within a given condition is shown in bold.

TABLE 4

Results for the Quadratic Spline Function

Performance Criteria

Method Bias SD RMSE

N D 250

FS-SM R .072 .091 .116
FS-SM B .081 .084 .117

FS-SM C .124 .087 .151
SPM AIC .017 .135 .137

SPM BIC .041 .103 .111

N D 500

FS-SM R .065 .068 .094

FS-SM B .079 .063 .101
FS-SM C .129 .063 .144
SPM AIC .012 .098 .098

SPM BIC .038 .077 .086

N D 1,000
FS-SM R .065 .053 .084

FS-SM B .081 .050 .096
FS-SM C .134 .048 .142

SPM AIC .010 .072 .073
SPM BIC .028 .065 .070

Note. SD D standard deviation; RMSE D root mean squared error; FS-SM R D factor scores with smoother,
regression method; B D Bartlett’s method, C D constrained covariance method; SPM AIC D semiparametric method,
minimum Akaike’s Information Criterion solution; BIC D minimum Bayes’ Information Criterion solution. The entry

with the lowest bias, SD, or RMSE within a given condition is shown in bold.
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170 BAUER, BALDASARO, GOTTFREDSON

FIGURE 4 Target function is negatively accelerated exponential function, N D 500; the shaded region is the

90% sampling interval, the bold solid line is the mean estimate, and the bold dashed line is the true function.

FS-SM D factor scores with smoothing; SPM D semiparametric modeling using a finite mixture of linear

structural equations; AIC D Akaike’s Information Criterion; BIC D Bayesian Information Criterion.

method produces wider sample estimate intervals than SPM with minimum BIC. For the

negative exponential, the FS-SM approach did not yield appreciably greater efficiency than

SPM, although this was the case for the quadratic spline function, as reflected in the relative

widths of the sample estimate intervals. The FS-SM approach generally had greater difficulty

approximating the quadratic spline function.

As in Study 1, there was no single best method of generating factor score estimates, in terms

of bias, standard deviation, or RMSE metrics of regression function recovery. Also consistent

with the earlier findings, among the two SPM solutions, the minimum AIC resulted in lower

bias but also lower efficiency than the minimum BIC. In some conditions, lower bias trumped

higher efficiency, resulting in a lower RMSE for the minimum AIC solution, and in other

conditions higher efficiency trumped lower bias, resulting in a lower RMSE for the minimum

BIC solution.
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DETECTING NONLINEAR RELATIONSHIPS 171

FIGURE 5 Target function is quadratic spline function, N D 500; the shaded region is the 90% sampling

interval, the bold solid line is the mean estimate, and the bold dashed line is the true function. FS-SM D factor

scores with smoothing; SPM D semiparametric modeling using a finite mixture of linear structural equations;

AIC D Akaike’s Information Criterion; BIC D Bayesian Information Criterion.

CONCLUSIONS

Summing over our results, we can offer the following conclusions. First, as hypothesized, the

FS-SM approach tends to be more biased than the SPM approach, due to shrinkage of nonlinear

relationships toward a straight line in factor score estimation. As expected, plots of factor score

estimates were more likely to accurately reflect nonlinear trends when factor score determinacy

was high, that is, with high communality factor indicators, and more factor indicators.

Interestingly, the SPM approach also seems to benefit from higher factor determinacy. In

retrospect, the latter finding is perhaps not surprising. The estimation of latent classes in

the SPM approach relies on nonnormality of the multivariate marginal distribution of the

observed indicators (Bauer & Curran, 2003, 2004). The multivariate nonnormality that exists

among the latent factors due to their nonlinear relationship is transmitted to the marginal
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172 BAUER, BALDASARO, GOTTFREDSON

observed distribution more strongly as the communality of the indicators increases, providing

more information from which to estimate the latent classes and thereby improve the SPM

approximation procedure. Additional indicators would similarly increase the information in the

multivariate observed distributions from which to estimate classes. More simply put, increasing

the quality and amount of data is always a good thing.

Second, also as hypothesized, the efficiency of the FS-SM approach often exceeded the

efficiency of the SPM approach. That is, the SPM approach generally exhibited greater sam-

pling variability (a higher standard deviation). Only for the negatively accelerated exponential

function did the SPM approach perform more efficiently than the FS-SM approach. This bias–

efficiency trade-off resulted in FS-SM often producing lower RMSE at low sample sizes (i.e.,

N D 250), and SPM always producing lower RMSE at high sample sizes (i.e., N D 1,000).

Third, although no explicit hypotheses were posited about performance differences across

functions, some interesting trends were observed. In particular, the degree of bias for FS-

SM seemed to decrease as the monotonicity of the underlying function increased. That is,

the ordering of the functions from least to most biased, as estimated by FS-SM, is negative

exponential, quadratic spline, medium quadratic, and large quadratic. FS-SM thus appears to

produce less bias as the target function becomes more linear, a predictable result of the fact

that FS-SM regression function estimates are shrunken toward a straight-line relationship. But

this trend also implies that the FS-SM approach would likely fail to detect subtler nonlinear

effects. This bias trend was not observed for the SPM approach. For SPM a similar trend was,

however, observed for sampling variability: The standard deviation of SPM estimates generally

decreased as the monotonicity of the target function increased, likely because fewer classes are

needed to approximate such functions.

RECOMMENDATIONS

Investigators seeking to diagnose nonlinear trends among latent variables would do well to

employ either of the methods investigated here. As is clear from Figures 2 through 5, both

approaches are capable of identifying nonlinear trends, albeit with different degrees of accuracy

and precision. In choosing between the two approaches, therefore, other considerations are

relevant.

The ease of implementation of the FS-SM approach is its chief advantage. Structural equation

modeling programs generally offer the option to output factor score estimates, although the

available types of factor score estimates (e.g., regression method or Bartlett’s scores) might

be limited. Given these estimates, it is straightforward to use any standard statistical analysis

program to produce a scatterplot with a smoothed regression function estimate. In contrast, the

SPM approach is somewhat more difficult to implement, requiring the estimation of multiple

models (i.e., mixture structural equation models with K D 1, 2, 3, etc., classes) and considerable

postprocessing of model results. Fortunately, Pek et al. (2009) recently provided computing

resources, including an online utility and an R package, which read in the results of a fitted

mixture structural equation model and automatically generate the smoothed regression function

estimate.2

2Available at http://www.unc.edu/psychology/dbauer/plotSEMM.htm
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DETECTING NONLINEAR RELATIONSHIPS 173

The primary advantage of the SPM approach is that it is less biased than the FS-SM

approach. The minimum BIC solution will produce an estimate of the regression function

that is unbiased over much of the range of the data. The minimum AIC solution improves

reproduction of the tails of the function where data are sparse, but at the cost of increased

sampling variability. The downside is that both SPM estimates are less efficient than FS-SM.

In examining Figures 2 through 5, these differences in efficiency are noticeable in the width of

the estimate intervals, but not so large as to dissuade use of the SPM approach or the minimum

AIC solution in particular. These efficiency differences are less consequential at large sample

sizes, at which the SPM approach consistently outperforms FS-SM in terms of RMSE. Thus,

particularly for large samples, SPM is the better approach.

An additional advantage of the SPM approach is that it is entirely model-based, so that

it can also be used inferentially, whereas FS-SM is entirely descriptive. Pek, Losardo, and

Bauer (2011) recently evaluated two methods for generating nonsimultaneous confidence bands

around the estimated regression function obtained from the SPM approach. Both delta-method

and parametric bootstrap confidence intervals performed quite well over most of the range of

the estimated function (with coverage rates slipping somewhat in the tails). Thus, whereas both

the FS-SM and SPM approaches provide estimates of underlying regression function, only the

SPM approach can also provide information about the uncertainty of the estimate, permitting

inferences about the population from which the sample was drawn.

In sum, therefore, we recommend use of the SPM procedure for detecting and visualizing

unknown nonlinear functions, particularly when fitting structural equation models to large

samples. The FS-SM approach is not, however, entirely without merit, and the use of either

approach would represent an advance over current practice. With the availability of these

procedures, diagnostic testing of the linearity assumption routinely made in structural equation

modeling should become a matter of course.
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APPENDIX A

FACTOR SCORE ESTIMATES

A general expression for the measurement and latent variable models of the structural equation

model is

yi D � C ƒ˜i C ©i ˜i D ’ C B˜i C —i
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DETECTING NONLINEAR RELATIONSHIPS 175

where i indexes individual and y is a p � 1 vector of measured variables; � is a p � 1 vector

of intercepts for the measured variables; ƒ is a p � q matrix of factor loadings; ˜ is a q � 1

vector of latent variables; © is a p � 1 vector of residuals for the measured variables; ’ is a

q � 1 vector of intercepts for the latent variables; B is a q � q matrix of regression coefficients

for the latent variables; and — is a q � 1 vector of residuals for the latent variables.

Further, define ‚ to be a p�p covariance matrix for the residuals of the measured variables

and ‰ to be a q � q covariance matrix for the residuals of the latent variables.

To compute the factor scores, we shall additionally make use of the following moment

matrices:

�˜ D .I � B/�1’ is the q � 1 model-implied mean vector of ˜

†˜˜ D .I � B/�1‰ Œ.I � B/�1�0 is the q � q model-implied covariance matrix of ˜

�
y

is the p � 1 mean vector of y

†yy is the p � p covariance matrix of y

Finally, define C to be the Cholesky root of †˜˜ such that †˜˜ D CC0.

We can now write the factor score formulas for the three methods used in the simulation.

Note that, in practice, matrices are populated with sample-specific estimates to compute the

scores.

The regression method (Thomson, 1936, 1951; Thurstone, 1935):

fRi D †˜˜ƒ0†�1
yy

.yi � �
y
/ C �˜

Bartlett’s method (Bartlett, 1937):

fBi D .ƒ0‚�1ƒ/�1ƒ0‚�1.yi � �
y
/ C �˜

The constrained covariance method (McDonald, 1981):

fC i D C0Œ.Cƒ0‚�1†yy‚�10

ƒC0/�
1

2 �0Cƒ0‚�1.yi � �
y
/ C �˜

where � 1
2

indicates the inverse of the Cholesky root of the matrix.

APPENDIX B

SEMIPARAMETRIC MODELING

To produce regression estimates via the SPM approach, a finite mixture of K linear structural

equation models is fit, and then a smoothed estimate of the regression estimate is obtained

by averaging over the mixing components. For the simulation, the latent variable model for

component k was specified as

˜1i D ’1k C —1i

˜2i D ’2k C “12k˜1i C —2i
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176 BAUER, BALDASARO, GOTTFREDSON

To aid in model estimation, we assumed that the covariance matrix of —1i and —2i was equal

across mixing components or

‰k D

�

§11 0

0 §22

�

We designate the mixing probabilities for the components as  1;  2; : : : ;  K, where
PK

kD1  k D

1.

The aggregate regression function for this model is implied to be

E.˜2j˜1/ D

K
X

kD1

. k j˜1/.’2k C “12k/

where  kj˜1 are conditional mixing weights that smooth the regression function and are

computed from Bayes’s theorem as

. kj˜1/ D
 k¥.˜1I ’1k; §11/

K
X

kD1

 k¥.˜1I ’1k; §11/

APPENDIX C

PERFORMANCE CRITERIA

Using results from Kendall and Stuart (1969, p. 51, Equation 2.37), the mean squared error

(MSE) for the regression function for replication r can be defined as

MSEr D E.Œ Ogr .˜1/ � g.˜1/�2/ D

Z

Œ Ogr.˜1/ � g.˜1/�2f .˜1/d˜1

where Ogr.˜1/ denotes the estimated regression function returning the predicted value of ˜2

given ˜1, generated either from the FS-SM or SPM method, as detailed in Appendices A

and B. Likewise, g.˜1/ is the predicted value of ˜2 returned by the true regression function.

Finally, f .˜1/ is the probability density function (PDF) of ˜1. Integrating the squared error

over the probability density of ˜1 implicitly weights errors by the density of observations in

the region in which they occur. That is, small discrepancies in areas dense with data might be

more impactful than larger discrepancies in sparse regions.

Because, in this case, this integral cannot be solved analytically, it was approximated

numerically using a Monte Carlo procedure. First, 10,000 values for ˜1 were generated from

f .˜1/, the distribution used to draw values of ˜1 for the simulation study; that is, the standard

normal distribution. These 10,000 values of ˜1 were then used to calculate predicted values of

˜2 from the true regression function g.˜1/ and from the estimated function Ogr .˜1/. Averaging

the squared difference between the true and estimated values over the simulated distribution of
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DETECTING NONLINEAR RELATIONSHIPS 177

˜1 produces an approximate MSE for each replication.

MSEr �

10;000
X

mD1

Œ Ogr.˜1m/ � g.˜1m/�2=10,000

Averaging the squared error within a given condition and taking the expected value over the

function produces an estimate of the overall MSE:

MSE �

10;000
X

mD1

(

250
X

rD1

Œ Ogr .˜1m/ � g.˜1m/�2

250

)

=10,000

The overall MSE was also decomposed into components reflecting bias and sampling

variance, as described by Kendall and Stuart (1969, p. 21):

MSE D B2 C V

where B2 represents the squared bias component and V represents the variance of the estimates.

Squared bias was approximated by Monte Carlo as

B2 �

10;000
X

mD1

Œg.˜1m/ � g.˜1m/�2=10,000

where E. Ogr .˜1// is replaced by the across-replications within-condition average g.˜1m/, de-

fined as

g.˜1m/ D

250
X

rD1

Ogr.˜1m/=250

Similarly, the variance can be approximated as

V �

10;000
X

mD1

(

250
X

rD1

Œ Ogr .˜1m/ � g.˜1m/�2

250

)

=10,000

Taking the root of each of these values puts the results back into the scale of the dependent

variable. Thus, for interpretation, the RMSE, bias, and standard deviation are reported as

opposed to MSE, B2, and V .D
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