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Theoretical Motivation

“To establish the development of pathology, an entire 
profile of developmental lines or pathways needs to be 
examined and compared to normal development for each 
line of functioning” (Loeber et al., 1993, p. 104).



“...there is still little that we can say with confidence 
about...why antisocial trajectories develop, why they 
broaden and deepen with development in some children 
yet taper off in others, and why they are so difficult to 
deflect once stabilized” (Richters & Cicchetti, 1993, p. 3).

“…temporary versus 
persistent antisocial 
persons constitute… 
two qualitatively 
distinct categories of 
individuals, each in 
need of its own 
distinct theoretical 
explanation.”  

(Moffitt, 1993)

“There are gophers, 

there are chipmunks, 

but there are no gophmunks.” 

(Meehl, 1994)

Empirical Examples
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The Growth Mixture Model
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The Random Coefficient Model

• A standard random coefficient 
growth model can be written:

iii εΛηy +=

Where 

is the vector of repeated measures 

is the design matrix (here assumed balanced)

is the vector of random coefficients for the individual 
trajectories (i.e., intercept, slope)

is the vector of time-specific residuals from the trajectories
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The Random Coefficient Model

• On the assumption that
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the pdf (or marginal model) for      is:iy
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The Growth Mixture Model

• Now assume that there are K groups, each with their own random 
coefficient growth model.

• Retain the assumption of normality of            within groups.

• The marginal model for      is now a mixture of normals with 
structured means and covariances, or
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Applications of Mixtures

“By a direct application, we have in mind a situation where we 
believe, more or less, in the existence of k underlying categories or 
sources, such that the experimental unit on which the observation X
is made belongs to one of these categories...” 

“By an indirect application, we have in mind a situation where the 
finite mixture form is simply being used as a mathematical device in 
order to provide an indirect means of obtaining a flexible, tractable 
form of analysis.”

Titterington, Smith & Makov (1985, pp. 2-3):

We will now consider the assumptions of the growth mixture model, 
and how they reflect on both possible types of applications.

Assumptions of the GMM

• The Component Distributions are Normal

• The Growth Model is Correctly Specified 

• The Relationships Among y and η are Linear

What problems will violating these 
assumptions create for direct applications? 

Are these ‘problems’ in fact opportunities 
for indirect applications?

Distributional Assumptions

A mixture of normals is necessarily nonnormal
(except in degenerate cases)

Nonnormality does not necessarily reflect a normal mixture
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“The question may be raised, 
how are we to discriminate 
between a true curve of skew 
type and a compound curve [or 
mixture].”
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2 Groups or Just an Approximation?Pearson (1895, p. 394):

0

The Conundrum Testing The Distributional Assumptions 
of Growth Mixture Models

Hypothesis 1

With multivariate normal data, it should be difficult to estimate 
two trajectory classes (with random effects); 

With multivariate nonnormal data, it should be easy to estimate 
at least two trajectory classes.

Hypothesis 2

A two-class model should generally only produce a significant 
increase in model fit for nonnormal data.

Bauer, D.J. & Curran, P.J. (2003). Distributional assumptions 
of growth mixture models:  Implications for over-extraction of 
latent trajectory classes. Forthcoming in Psychological Methods.

Testing The Distributional 
Assumptions of Structured 

Normal Mixture Models

• 500 Datafiles Generated From a K=1 Random 
Coefficient Growth Model (N=200 or N=600) 
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Marginal Distributions

Normal Data
18% Converged on Proper Solutions (89 Samples)

• BIC favored 2 Classes 0% of the time.
• CLC favored 2 Classes 2% of the time.

Skew 1, Kurtosis 1 Data
94% Converged on Proper Solutions (471 Samples)

• BIC favored 2 Classes 100% of the time.
• CLC favored 2 Classes  99% of the time.

Skew 1.5, Kurtosis 6 Data
97% Converged on Proper Solutions (485 Samples)

• BIC favored 2 Classes 100% of the time.
• CLC favored 2 Classes 100% of the time.

Hypotheses

• With normal data, it should be difficult to extract two classes,
With nonnormal data, it should be easy to extract two classes.

• A two-class model should generally only produce a significant    
increase in model fit for nonnormal data.

Results (N=600)



Problem for Direct Applications

• In practice, it will be difficult to know whether 
estimated classes reflect a true mixture or simply 
serve to accommodate violation of distributional 
assumptions.

Opportunity for Indirect Applications

• GMMs can be used to provide a semiparametric
approximation to nonnormal distributions of 
repeated measures (random effects, residuals).

• GMMs avoid the traditional arbitrary assumption of 
normality.

Model Specification
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Population Model: Bivariate Standard Normal Distribution, 

Fitted Models:
A. Unrestricted One Class Model

B. Restricted One Class Model 

C. Restricted Two Class Model
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LL  = -261.25 
AIC = 536.49 
BIC = 554.73 
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Effect of Misspecification: Bivariate Case Misspecification of the Structural Model 
and Latent Class Extraction

Model for Means and Covariances of Aggregate Population:
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• The aggregate covariance matrix is partitioned into components 
reflecting class differences in mean growth and within class covariance 
due to the random effects.

• If the within-class growth model is misspecified, then the estimation 
of spurious latent classes with different mean growth may improve 
recovery of Σ. 



The Impact of Misspecification of the Growth 
Model in Growth Mixture Models

• A popular variant of the GMM assumes variances 
and covariances of growth parameters are zero 
within classes (Nagin, 1999).

• If there is individual variability around class mean 
trajectories, this is a misspecified model.

• Two wrongs make a right:
Misspecification of both the within-class growth 
model and the number of classes can lead to 
overall good fit.

Hypothesis

• Even with multivariate normally distributed data, spurious latent 
trajectory classes may be estimated and appear optimal if the 
growth model is misspecified.

Results (from exemplar replication) 

Individual Trajectories Distributed Around Mean Trajectory 

Model LL AIC BIC SRMR 

1-Class 6050.73 12121.46 12165.43 .027 

 
No Individual Trajectories – Class Mean Trajectories Only 

Model LL AIC BIC SRMR 

1-Class 6492.43 12998.85 13029.63 .375 

2-Class 6175.36 12380.72 12446.67 .111 

3-Class 6089.23 12224.47 12325.6 .059 

4-Class 6059.81 12181.62 12317.93 .049 

5-Class 6043.50 12165.00 12336.48 .034 

6-Class 6030.25 12154.50 12361.15 .032 

7-Class 6014.40 12138.79 12380.63 .029 

8-Class 6009.77 12145.54 12422.54 .028 
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Misspecification Leading to Spurious Latent Classes
Problem for Direct Applications

• In practice, one must guard against the estimation 
of spurious classes due to misspecification of the 
within-class growth model.

Opportunity for Indirect Applications

• Nagin’s (1999) model can be used to identify modal 
patterns in growth and to examine local conditions 
relating to those patterns.



Nonlinear Relationships

Nonlinear Relationships

Nonlinear Relationships may be Viewed in Two Ways

(1) Distributional Assumptions are Violated

• Multivariate Normality     Linearity

• NonLinearity     Multivariate Nonnormality

(2) The Model is Misspecified

• Relationships modeled as linear when actually nonlinear

• Nonlinear function could be adequately approximated by 

inclusion of polynomial terms?

From either perspective, latent classes will be needed to accommodate 
nonlinearity, even if only one group exists in the population.

Effect of Nonlinearity: Bivariate Case
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AIC = 494.64 
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LL  = -224.14 
AIC = 468.29 
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Latent Classes 
accommodate 
nonlinearity in 
the same way as 
nonnormality
and model misfit

Here, differences 
in location 
accommodate 
nonlinearity
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Here, differences in location 
and orientation of class 
distributions accomodate the 
nonlinear relationship.

Bivariate distribution could be 
the distribution of individual 
intercepts and slopes in a linear 
growth model.

Effect of Nonlinearity: Bivariate Case



Problem for Direct Applications

• In practice, latent classes may reflect nonlinear 
relationships among random effects rather than a 
true mixture.

Opportunity for Indirect Applications

• GMMs may be used to provide a semiparametric
appoximation to possibly nonlinear relationships 
among random effects.

• Avoids the arbitrary assumption of linearity.

Conclusions

• The problem this poses for direct applications is that 
it may be difficult to discern the true function that the 
latent classes are serving (true clusters or not?).

• Growth Mixture Models offer a number of new 
modeling possibilities, bringing both new problems and 
new opportunities for analysis.

• The violation of several key assumptions of the 
traditional random coefficient growth model can induce 
the estimation of spurious classes.

• The opportunity is that indirect applications of the 
GMM can recover features of the growth process that 
might otherwise go unmodeled (and typically 
constitute assumption violations).


