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Outline

Act I: Character Introduction

• The latent curve model

• The growth mixture model

• The prototypical empirical application

Act II: The Challenge

• Methodological concerns with applications of growth mixture 
models

• Theoretical concerns with applications of growth mixture 
models

Act III: The Dénouement

• Doing better science with and without growth mixture 
models.
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• iid random effects (exchangeability / single population)

• Normally distributed random effects and residuals

• Implies marginal normality of repeated measures

• Properly specified mean and covariance structure

• Linear relationships between repeated measures and  

exogenous predictors

• Simple random sample

• Data missing at random

Key Assumptions



The Growth Mixture Model

• Elaborates the LCM by allowing latent classes, relaxing 

assumption of single population

Unconditional Model

Marginal PDF:

The Growth Mixture Model

Conditional Model

Marginal PDF:
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Homogeneous class covariance matrices:

Variants on the Growth Mixture Model

No random effects (latent trajectory class analysis):
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Caveats to Assumptions

• Observed variables can be binary, ordinal or counts, but 

random effects must be normal.

• Complex samples can be handled given clustering 

information and sampling weights

• Some nonlinear effects can indeed be modeled



Applications of Growth Mixture Models

• Number of applications of growth mixture models is 

accelerating.

• An imperfect index: citation counts for

Muthén, B. O., & Muthén, L. K. (2000).  Integrating person-centered and 
variable-centered analyses:  Growth Mixture Modeling with Latent 
Trajectory Classes.  Alcoholism:  Clinical and Experimental Research, 24, 
882-891.    

Muthén, B. & Shedden, K. (1999). Finite mixture modeling with mixture 
outcomes using the EM algorithm. Biometrics, 55, 463-469.

Nagin, D. (1999) Analyzing developmental trajectories: A semi-parametric, 
group-based approach. Psychological Methods, 4, 139-157.

The Increasing Application of Growth Mixture Models

An informal survey of 7 applications published in 2005 citing 
Muthen & Muthen (2001):

• Content is aggressive/deviant behavior or substance use

• School-based saturation samples and convenience samples

• Median consent rate 75%, median attrition rate 25%

• Ad hoc measurement of outcome variable:

• Ordinal item, sum or average of ordinal items, logged 
sum of counts

• Number of latent classes estimated by BIC: 2 to 6, mode of 4

• Latent classes directly interpreted as types and used to draw 
policy implications.

The Prototypical Application Tenability of Model Assumptions

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Typical Application:

clear floor effects, typically 
poor measurement, 
distributions likely to be 
skewed in any case.

rarely evaluated for 1-class 
model

never evaluated

never random, nesting within 
school

Non-response, 
non-random attrition.



When the Assumptions are Wrong

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Consequence if Wrong:

???

???

???

???

???

Conditional Normality

• A mixture of normals is necessarily non-normal        
(except in degenerate cases)

• A non-normal distribution does not necessarily arise from 
a mixture.
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• 500 Datafiles Generated From a 
Single Population Latent Curve 
Model (with N=200 or N=600 each) 

• Three Distributional Conditions 
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Conditional Normality

• When marginal distributions were normal, minimum BIC 

occurred with 1 class 100% of the time

• When marginal distributions were nonnormal, minimum BIC 

occured with 2 classes 100% of the time (spurious classes)

• Spurious latent classes served to approximate the 

nonnormal repeated measures via a normal mixture.



When the Assumptions are Wrong

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Consequence if Wrong:

Spurious latent classes
(Bauer & Curran, 2003)

???

???

???

???

Properly Specified Covariance Structure

• For an unconditional GMM, the implied aggregate covariance 

matrix for the repeated measures is: 
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• Given this, the estimation of spurious latent classes can 

“compensate” for improper specification of the within-class 

structure.
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When the Assumptions are Wrong

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Consequence if Wrong:

Spurious latent classes
(Bauer & Curran, 2003)

Spurious latent classes 
(Bauer & Curran, 2004)
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• 500 Datafiles Generated From a Single Population Latent 
Curve Model (N=600 each) 

• Exogenous variable nonlinearly predicts the intercept

One Class Two Classes

• Minimum BIC favored 2 classes in 75% of replications

Linearity When the Assumptions are Wrong

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Consequence if Wrong:

Spurious latent classes
(Bauer & Curran, 2003)

Spurious latent classes 
(Bauer & Curran, 2004)

Spurious latent classes 
(Bauer & Curran, 2004)

???

???



Simple Random Sample

• Most empirical applications include some nesting not taken 

account of either through fixed grouping variables or 

random effects.

• For a small number of groups, group differences in change 

over time may emerge as latent classes (i.e., omitted known 

grouping variable compensated for by a latent grouping 

variable).

• For a larger number of groups, latent classes may discretely 

approximate a continuous distribution of random effects.

When the Assumptions are Wrong

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Consequence if Wrong:

Spurious latent classes
(Bauer & Curran, 2003)

Spurious latent classes 
(Bauer & Curran, 2004)

Spurious latent classes 
(Bauer & Curran, 2004)

Spurious latent classes 
(Wedel, Hofstede, Steenkamp, 1998)

???

Missing at Random

• Most studies have lower than optimal consent rates and 

some attrition.

• Those not participating or dropping out may reside in 

particular regions of the population distribution (e.g., the 

“worst” cases in the upper tail).

• The observed distributions will then be distorted.

• GMMs fit to these observed distribution may not recover true 

latent class structure.

Missing at Random: Non-Response

Distortion
Produces 
Non-Normal
Marginal
Distributions



When the Assumptions are Wrong

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Consequence if Wrong:

Spurious latent classes
(Bauer & Curran, 2003)

Spurious latent classes 
(Bauer & Curran, 2004)

Spurious latent classes 
(Bauer & Curran, 2004)

Spurious latent classes 
(Wedel, Hofstede, Steenkamp, 1998)

Possibly spurious  latent 
classes

The Methodological Challenge

• Aside from true population subgroups, latent classes can 

represent:

• Non-normality

• Misspecification of within-class model

• Nonlinear effects

• Complex sample

• Non-response / Non-random attrition

• Typically more than one of these will be present.

Improving Methods

• Most of these issues cannot be fixed by changing the 

statistical model.

• What is needed:

• Better measurement (interval level)

• Diagnostics for checking conditional normality, 

detecting misspecification of the covariance structure, 

and visualizing potentially nonlinear relationships.

• More rigorous sampling procedures

• Sound methodology

• More careful interpretation

Theoretical Concerns

• Even if methodology can be improved, theoretical reasons 

for skepticism remain.



The “Selling” of Growth Mixture Models

• Applied researchers are convinced that LCMs give them one 

trajectory while growth mixture models give them multiple 

trajectories.
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A typical study identifies and then predicts the latent classes.

• Worst case: assignment by modal probability then prediction.

• Best case: Prediction done in the model itself.

Modeling Heterogeneity with the GMM
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• If we predict only which of the four trajectories an individual 

belongs to, we limit ourselves to this taxonomy of four.

Modeling Heterogeneity with the GMM

time
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Low (40%)
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• But do we really believe 

these four trajectories 

represent a definitive 

taxonomy of heterogeneity 

in change over time?

Returning to the Latent Curve Model

• The conditional LCM can capture more heterogeneity in 

patterns of change.

Conditional Model

Level 1:

Level 2:
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• If these two predictors are dichotomous, we obtain four 

trajectories, if continuous, we obtain an infinite number of 

trajectories
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Comparison

• The GMM gives us four discrete trajectory types to predict.

• The conditional LCM gives us a potentially infinite family of 

model-implied trajectories, of which four are plotted.

• One other possibility in the GMM is to predict both class 

membership and random variability within classes.

• However this partitions the effects of the predictors into 

within- and between-class portions, making interpretation 

difficult.

• In practice this is rarely done.

• When done, the results are usually interpreted poorly.

Another option

• The chief methodological challenge to the application of 

GMMs is that one does not know what the latent classes 

represent.

• The chief theoretical challenge is that it isn’t clear that a 

finite set of trajectory classes well ever sufficiently capture 

heterogeneity in change in the population.

One must then ask, under what circumstances are growth 

mixture models scientifically useful?

Summary of Challenges



• Let’s consider the application of these models to a radically 

different kind of data that does not share the limitations of 

many psychological data sets.

• World Bank data on average life expectancy within 

countries.

• Assessed in 1982, 1987, 1992, and 1997.

• Initial hypothesis: two trajectory classes will emerge 

representing developed and developing nations, 

respectively.

What a Scientifically Useful Application Might Look Like Tenability of Model Assumptions

Assumptions of the Model:

Conditional normality

Properly specified model

Linearity of relationships

Simple random sample

Missing at random

Life Expectancy Application:

Dependent variable is measured 
on a ratio scale, no apparent 
floor or ceiling effects

Will begin with an unrestricted 
finite mixture

Can use model diagnostics if this 
appears risky

The biggest challenge: sample 
units likely spatially correlated, 
sample IS population

No, but too little to matter:    
198 of 212 countries provided 
data (93% “consent” rate),   
5% or less missing each year.
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A Look at the Data
How Many Latent Classes?

• Comparative fit of unrestricted multivariate normal mixture 

models with 1 to 5 classes: 
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How well do the models reproduce the data?
Choosing among models
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• We expected to find two 

classes and indeed saw 

the greatest increase in 

model fit with the addition 

of the second class.

• The minimum BIC was 

obtained with 4 classes 

and this model subdivides 

high and low trajectories 

in a compelling way
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2 Class Model:

• Class 1: France, Sweden, USA, 

Lebanon, Nepal, Philippines…

Who’s clustering where?
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2 Class Model:

• Class 1: France, Sweden, USA, 

Lebanon, Nepal, Philippines…

• Class 2: Iraq, Kenya, Estonia,    

Ireland, Haiti, Ethiopia…

Who’s clustering where?

This classification is absurd

Ordinarily, however, we would have no way of knowing this
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4 Class Model:

• Class 1: Botswana, Burundi, 
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4 Class Model:

• Class 1: Botswana, Burundi,     

Congo, Zambia, Kenya,      

Zimbabwe, Lesotho, Liberia…

• Class 2:  Armenia, Belarus,     

Estonia, Lithuania, Latvia,     

Romania, Saudi Arabia, Portugal…

• Class 3: France, Sweden, Iceland, 

Japan, Singapore, United States…

• Class 4: Antigua, Panama, 

Argentina, Taiwan, Fiji, Paraguay, 

Kuwait, Czech Republic…
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This classification is 
more sensible

• The exploratory mixture analysis showed that my naïve 

initial hypothesis was too simplistic.

• The class of countries experiencing decreases in life 

expectancy after 1987 shows a qualitative difference from 

the other class trajectories.

• Confidence in these results is bolstered by knowing what 

the latent classes are not representing (e.g., assumption 

violations).

• Nevertheless, an expert might say these results are still 

overly simplistic (e.g., 4 “types” of countries…)

How was this exercise scientifically useful?

• With better theory, we can pursue confirmatory analyses.

• For this data, we might specify a conditional LCM:

• Use status as developed nations, transitional 

economies, and sub-Saharan as time-invariant 

predictors.

• Include GDP, conflict, and HIV prevalence as a time-

varying predictors, possibly with lagged effects.

• Although a less complex statistical model, the LCM would 

likely capture and explain more heterogeneity in patterns 

of change than the GMM.

What about the old way?



• The statistical theory behind GMMs is incongruent with 

most applications.

• Methodological problems range from measurement to 

sampling to model specification

• At a theoretical level, GMMs lack verisimilitude.

• When methodological problems are minimized, GMMs can 

reveal unanticipated heterogeneity in patterns of change.

• Hypothesized heterogeneity in patterns of change is likely 

better evaluated with conditional LCMs.

• Indirect applications of mixtures also hold much promise.

Conclusions


