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Measurement invariance is a necessary condition for the evaluation of factor mean differences
over groups or time. This article considers the potential problems that can arise for tests of
measurement invariance when the true factor-to-indicator relationship is nonlinear (quadratic)
and invariant but the linear factor model is nevertheless applied. The factor loadings and
indicator intercepts of the linear model will diverge across groups as the factor mean
difference increases. Power analyses show that even apparently small quadratic effects can
result in rejection of measurement invariance at moderate sample sizes when the factor mean
difference is medium to large. Recommendations include the identification of nonlinear
relationships using diagnostic plots and consideration of newly developed methods for fitting
nonlinear factor models.
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Measurement invariance refers to the equivalent measure-
ment of a construct or set of constructs in two or more
groups or over time via a common instrument (i.e., a set of
observed variables or indicators). When measurement in-
variance holds, differences observed between groups or
over time reflect true differences on the constructs of inter-
est. If measurement invariance does not hold, however, any
observed differences might simply reflect inequities of mea-
surement and not true differences on the relevant constructs
(Horn & McArdle, 1992; Meredith, 1993; Ployhart & Os-
wald, 2004). Establishing measurement invariance has thus
become an integral area of psychometric research. Within
the factor analytic tradition, early attention was focused on
this issue by Meredith (1964). More recently, this literature
has expanded greatly by reformulating questions of mea-
surement invariance within a confirmatory factor analytic or
structural equation modeling approach (Jöreskog, 1971;
Meredith, 1993; Sörbom, 1974).

Studies of measurement invariance usually involve the
comparison of independent samples, typically two. A mul-
tiple-groups confirmatory factor analysis is then used to test
the tenability of equality constraints on various components
of the measurement model (e.g., factor loadings, indicator

intercepts, residual variances), often in a sequential fashion
(Bollen, 1989, pp. 355–369; Widaman & Reise, 1997). Less
common are tests of longitudinal invariance, wherein a
single sample is administered the same measurement instru-
ment on multiple occasions (Meredith & Horn, 2001; Van-
denberg & Lance, 2000). Although procedures for testing
measurement invariance are by now well established in
practice, several methodological issues continue to receive
attention. These include the relation of within- and between-
group measurement properties (Borsboom, Mellenbergh, &
Van Heerden, 2002; Lubke, Dolan, Kelderman, & Mellen-
bergh, 2003), the use and power of equivalence tests
(Cheung & Rensvold, 2002; Meade & Lautenschlager,
2004), the permissibility of differences in indicator inter-
cepts (Millsap, 1998), and the difficulties that may arise
when only a subset of indicators function equivalently over
groups or time (i.e., partial invariance; Byrne, Shavelson, &
Muthén, 1989; Cheung & Rensvold, 1999; Millsap &
Kwok, 2004; Steenkamp & Baumgartner, 1998).

The purpose of this article is to consider an issue that has
heretofore received comparatively little attention in the
measurement invariance literature. Specifically, the factor
analysis model used to evaluate measurement invariance
assumes that the relationships of the observed measures to
the factors are linear. In the single-sample context, pro-
nounced nonlinearity in these relationships may occur if, for
instance, the manifest variables are dichotomous or ordinal
and incorrectly treated as continuous. In such instances,
difficulty factors may emerge in the linear factor model
(McDonald, 1967; Wherry & Gaylord, 1944) and more
preferable alternatives are to analyze polychoric correla-
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tions or to use nonlinear item response models (Jöreskog &
Moustaki, 2001; Mislevy, 1986; Muthén, 1984; Muthén &
Christoffersson, 1981; Waller, Tellegen, McDonald, &
Lykken, 1996). However, even with continuous observed
variables, the relationships between the factors and indica-
tors may not be strictly linear. A key implication of the
linear model is that the strength of the relationship between
a factor and measured variable is constant at least within the
observed range of the data. This would not be the case if, for
instance, there was a floor or ceiling effect for the measure
or, more generally, if increasing levels of the latent factor
produce either diminishing or increasing differences in the
measured variable reflecting the factor. For example, in
making ratings of aggression, observers might have greater
difficulty judging differences in low levels of aggression
than in high levels of aggression. Similarly, Mooijaart and
Bentler (1986) comment that, for attitude scale data, partic-
ipants often provide more extreme opinion ratings (at the
ends of the scale) than would be expected on the basis of a
linear model.

Methods for estimating nonlinear factor analysis models
have been available for many years and have recently seen
rapid developments (see Wall & Amemiya, in press, for a
review). These methods are rarely implemented in practice,
however, despite the availability of specialized software
(Etezadi-Amoli & McDonald, 1983; Wall & Amemiya, in
press). Such neglect may reflect the view that minor depar-
tures from linearity are relatively innocuous, as a linear
model will still provide a useful first-order approximation to
the true function. However, when the goal of the investiga-
tion is to evaluate measurement invariance, a linear approx-
imation can present certain difficulties. Namely, in this
article, I will demonstrate that if the factor-to-indicator
relationship is invariant but evinces some curvature and if
the factor means differ over groups, then the loadings and
intercepts obtained by fitting a linear factor model will
differ, causing invariance tests to be rejected. Power curves
show that at modest sample sizes, even seemingly minor
curvature in factor-to-indicator relationships can lead to
rejection of factorial invariance in a linear factor model if
the factor mean difference is of modest to large size. Al-
though this exposition is focused on between-groups tests of
measurement invariance, similar problems would arise in
longitudinal tests of measurement invariance.

Consequences of Unmodeled Nonlinearity for
Factorial Invariance

Let us begin by considering a relatively simple five-
indicator latent factor model for a single sample. Denoting
the indicators as x1 through x5 and the latent factor as �, the
model for person i may be written as

�
x1i

x2i

x3i

x4i

x5i

� � �
�1

�2

�3

�4

�5

� � �
�1

�2

�3

�4

�5

��i � �
�1i

�2i

�3i

�4i

�5i

� . (1)

This model is, in effect, a simultaneous linear regression of
each indicator on the latent factor and hence the symbols �,
�, and � simply designate regression intercepts, slopes
(loadings), and residuals. A key point for this article is that
the regression of each indicator on the latent factor is
assumed to be linear in form.

A more general expression for the factor model is

xi � � � ��i � �i. (2)

Here, xi is a p � 1 vector of scores on p manifest variables
(or factor indicators) for individual i, � is a p � 1 vector of
indicator intercepts and � is a p � q matrix of factor
loadings describing the regression of the manifest variables
on the q latent common factors in the q � 1 vector �i. The
p � 1 vector �i holds the indicator residuals net the influ-
ence of the common factors. These residuals include both
variability due to random measurement error and true-score
variability that is unique to each indicator. In addition, the
distribution of the latent factors �i is captured via the q � 1
vector of latent means � and q � q covariance matrix �.
The residuals �i are assumed to have zero expectation and a
p � p covariance matrix �. The latent factors and residuals
are assumed to be uncorrelated.

Under these assumptions, the model-implied mean vector
and covariance matrix of x are given as

� � � � ��

� � ���� � �. (3)

It is important to note that not all parameters in �, �, �, �
and � can be estimated. One reason is that the latent factors,
being unobserved, have no natural metric, and hence their
means and variances are arbitrary. There are two common
choices for establishing the scale of the latent factors. The
first choice is to set the mean and variance of the factor to
zero and one, respectively, thus standardizing the factor.
The second possibility is to choose a particular indicator to
anchor the scale of the latent factor by setting the intercept
and loading of this indicator to zero and one, respectively
(e.g., setting �1 � 0 and �1 � 1 for the model in Equation
1). The latent factor then draws its (unstandardized) metric
from the scaling indicator.

In addition to setting the scale of the latent variables, each
parameter in the model must be uniquely identified by the
means, variances, and covariances of the indicators. That is,
there must be sufficient information in the data to locate a
single optimal value for each estimate. Identification of
these parameters can be ascertained through covariance
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algebra or through rules that apply to specific model struc-
tures. For instance, for a single-factor model with uncorre-
lated residuals, the three-indicator rule establishes that the
model is just-identified, meaning that there is just enough
information to obtain a unique estimate for each parameter
(Bollen, 1989, p. 244). With more indicators for the factor,
the model is overidentified, meaning that there are enough
restrictions on the means and covariances of the indicators
to allow a test of the plausibility of these restrictions against
the sample means and covariances with a chi-square test of
overall model fit. Similarly, a two-indicator rule applies to
multifactor models where the factor loadings form indepen-
dent clusters (Bollen, 1989, p. 244; McDonald & Ho, 2002).
In this case, two indicators per factor yield an overidentified
model if the factors are correlated, the residuals of the
indicators are uncorrelated, and there are no cross-loadings
(all indicators load on only one factor).

Further details on the structure of the linear factor anal-
ysis model and issues of identification, estimation, and
model testing are available from several excellent texts,
including Bollen (1989), Kaplan (2000), or Kline (2005).
This model is now elaborated to allow for multiple groups
and tests of measurement invariance across groups.

Multiple Groups Factor Analysis

Suppose that data have been collected on the same man-
ifest variables for two independent groups and that a linear
factor model is specified for each group. Using a parenthet-
ical superscript to differentiate between the two groups, the
factor models for Groups 1 and 2 would be specified as

��1� � ��1� � ��1���1�

��1� � ��1���1���1�� � ��1� (4)

and

��2� � ��2� � ��2���2�

��2� � ��2���2���2�� � ��2�. (5)

These equations generalize straightforwardly to cases with
more than two groups.

Typically, when one fits a multiple-groups factor model,
the goal is to determine if the factor structure (or measure-
ment model) is the same or different over groups. A hier-
archy of levels of measurement invariance can be differen-
tiated by reference to Equations 4 and 5 (Meredith, 1993;
Widaman & Reise, 1997). Typically, the lowest level of
equivalence to be considered is whether the general factor
structure is invariant over groups, a condition known as
configural invariance (Horn & McArdle, 1992). For con-
figural invariance to hold, the model form must be identical
over groups (in terms of zero and nonzero parameters), but
the values of the nonzero parameters in the model can all

potentially differ. Configural invariance generally suggests
that the factors represent the same theoretical constructs
across groups, but these constructs cannot necessarily be
compared directly across groups because of possible ine-
qualities of measurement. To make such comparisons, not
only must the form of the model be identical, the values of
many of the estimates must also be equal.

The next level of invariance requires the factor-loading
matrices to be equivalent over groups (i.e., �(1) � �(2)), a
condition known as weak factorial invariance. If weak
factorial invariance holds, then this permits unambiguous
comparisons of the factor covariance matrices, �(1) and
�(2). For instance, one might be interested in knowing
whether two factors are more correlated in one group than
another. If weak factorial invariance does not hold, the
result of this comparison will depend on how the factors are
scaled (e.g., which indicators are chosen to scale the factors
by setting their loadings to one). Under weak factorial
invariance, the comparison of �(1) and �(2) will instead
yield substantively identical results no matter how the fac-
tors are scaled (Widaman & Reise, 1997). Similarly, differ-
ences in the factor means of the groups, �(1) and �(2), are
often also of interest. For comparisons of the factor means
to be valid, strong factorial invariance is required such that
the intercepts of the models are also equal (i.e., �(1) � �(2)).
Again, if this condition holds then the comparison of factor
means is independent of the particular choice of scaling for
the latent factors, and if it does not, then the comparison will
vary depending on how the metric of the latent variables is
set (Widaman & Reise, 1997). Finally, strict factorial in-
variance exists if, in addition to the above conditions, the
residual variances of the indicators are equal across groups
(i.e., �(1) � �(2)). This latter condition implies that all of
the differences in the means and covariances of the indica-
tors across the two groups arise from differences in the
latent variables. The progressive imposition of these con-
straints produces a sequence of nested model comparisons
that permit the evaluation of each level of invariance via a
likelihood ratio chi-square test.

If some but not all of the factor loadings and/or intercepts
significantly differ across groups, then this is referred to as
partial measurement invariance. Some authors assert that
comparisons of factor means should not be made under
partial invariance (Bollen, 1989; Meredith, 1993; Ployhart
& Oswald, 2004), whereas others have argued that small
differences in a few factor loadings should not prevent the
assessment of factor mean differences over groups (Byrne et
al., 1989; Steenkamp & Baumgartner, 1998). Taking a more
pragmatic approach to the issue, Millsap and Kwok (2004)
suggested that the acceptability of partial invariance should
depend on the measure’s purpose. They considered the
special case in which one selects individuals on the basis of
unit-weighted composite scores, noting the potentially det-
rimental consequences of partial invariance for selection
accuracy.
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Nonlinear Factor-to-Indicator Relationships

One assumption that is key to the factor model reviewed
above is that the regression of each manifest variable on the
latent variables is linear. However, let us now consider the
consequences of fitting a linear factor model when the true
relationships between the manifest and latent variables are
not linear. As an analytically convenient example, assume
that the relationship of the latent factor to one indicator is
well approximated by a quadratic function and that the
factor is normally distributed. Note that a quadratic model
will not approximate all nonlinear functions well (e.g., a
logistic) and is used here only as a case-in-point. For this
single manifest variable x and latent factor �, the measure-
ment model might then be

xi � � � ��i � ��i
2 � �i, (6)

where � is used to designate the quadratic effect. To sim-
plify the presentation, no equations are given for the other
indicators in the model, some of which might also be
nonlinearly related to the factor, so that the matrix notation
used in the previous sections can be avoided.

Suppose that the following misspecified linear factor
model is fit to data generated from the above equation:

xi � �* � �*�i � �*i. (7)

The superscript * indicates a difference in value from Equa-
tion 6. The starred components to this equation include not
just the intercept and slope, but also the residuals, which
will differ because of the omission of the quadratic effect. If
� has mean � and variance 	, then the coefficients �* and �*
can be expressed as

�* � � � 2��

�* � � � ��	 
 �2�. (8)

A more detailed derivation of Equation 8 is given in the
Appendix, which also provides a derivation of the variance
of �* relative to �. There are two important results of these
derivations: (a) The factor loading is a function of the factor
mean, and (b) the intercept is a function of the factor mean
and variance. These results have serious implications for
testing measurement invariance.

If x is measured in multiple samples and the factor mean
� differs across groups, then Equation 8 implies that the
estimated loadings from a linear factor analysis model will
also differ. Specifically, if Equation 6 holds in both groups
and � is normally distributed within groups, then the differ-
ence in the linear factor loadings and intercepts will be

�*�2� 
 �*�1� � 2����2� 
 ��1��

�*�2� 
 �*�1� � �����1��2 
 ���2��2 � 	�2� 
 	�1��. (9)

Clearly, as the factor mean difference between the groups
increases, the slopes and intercepts of the linear factor
model will also diverge. An example is shown in Figure 1,
where even apparently modest curvature in the factor-to-
indicator relationship produces a visible difference in the
linear regression slopes and intercepts for the two groups. In
the absence of a factor mean difference, the linear factor
loadings will be invariant, but the intercepts will continue to
differ if the factor variances are different.1

Equation 9 suggests that tests of weak or strong measure-
ment invariance in a linear factor model may fail even if the
generating function is invariant over groups if this function
is not strictly linear and the groups differ in their factor
means. In some respects, the rejection of invariance in the
linear factor model under these conditions would be accu-
rate—if one applies a linear approximation to the regression
function in each group, the intercepts and loadings will
indeed differ. However, the conclusion drawn from this
result may be that the manifest variable is not equally
reflective of the latent factor in both groups, when in fact the
true factor-to-indicator regression function is identical (but
misspecified) for both groups. An open question is how
much curvature is required for invariance tests to be rejected
in the linear factor model. In the following section I report
a small study aimed at answering this question for the
quadratic case.

When Invariance Tests Fail

On the basis of the preceding analytical derivations, the
power of the likelihood ratio test to reject measurement
invariance in the linear factor model was evaluated under
variations in three conditions: the extent of curvature in the
factor-to-indicator relationship (�), the factor mean differ-
ence (�(2) � �(1)), and the sample size. The following
population model was used in all conditions:

�
x1i

x2i

x3i

x4i

x5i

� � �
0
0
0
0
0
� � �

1
1
1
1
1
� ��i� � �

0
0
0
0
�

� ��i
2� � �

�1i

�2i

�3i

�4i

�5i

� .

(10)

Note that only the regression of x5 on � was specified as
curvilinear. The distribution of � was specified as normal
with variance of 1.0 and mean of �(g) (where g � 1, 2

1 The residual covariance matrices may also differ over groups
if the factor variances differ over groups, having implications for
tests of strict measurement invariance (see Appendix). This dif-
ference is not considered further in this article because the equiv-
alence of the factor loadings and intercepts is generally thought to
be of much greater importance than the equivalence of the residual
variances.
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indexes group). The residuals of the indicators, �, were
specified to be normally distributed and independent with a
variance of .25 each. This specification set the reliabilities
of the linear indicators at .80.

Four levels of each condition were crossed in a 4 � 4 �
4 factorial design. Specifically, � was set to either �.025,
�.050, �.075, or �.100. Although there are no clear norms
for what the magnitude of quadratic effects might be, these
levels were intentionally selected to assure monotonicity of
the function over the observed range of the data (i.e., the
quadratic function does not attain its maximum or change
direction within the observed range of the data) and to
represent apparently modest curvature in the factor-to-indi-
cator relationship. To obtain a standardized measure of
effect size, Cohen’s f 2 was calculated within-groups for
each level of �, resulting in values of .005, .020, .045, and
.080, respectively. According to Cohen (1988, pp. 410–
414), an f 2 of .02 is a small effect, an f 2 of .15 is a medium
effect, and an f 2 of .35 is a large effect. By this measure, the
quadratic effect used in the simulation ranged from trivial to
somewhere between small and medium. Also, the factor
mean in the first group, �(1), was set to 0 in all models to
provide an anchor point for the factor mean difference and
�(2) was then set to either .25, .50, .75, or 1.0. Given the
factor variance of one, these values are in the metric of
Cohen’s d, where .2, .5, and .8 represent small, medium, and
large effects, respectively (Cohen, 1988, pp. 20–27). The
larger effect size of 1.0 used in the present study was chosen
in part because of the argument of Hancock (2001) that,

when comparing latent means, Cohen’s standards should be
adjusted upward because the mean difference is no longer
attenuated by measurement error. The last condition varied
in the simulation was the per group sample size, set at
N(1) � N(2) � 100, 200, 400, and 800.

Two methods were used to estimate power. First, using
the approach of Satorra and Saris (1985), analytical power
estimates were computed using the population mean vectors
and covariance matrices implied by Equation 10 for the two
groups. This approach provides power estimates for a like-
lihood ratio test between a model that perfectly reproduces
the population means and covariances for the two groups
and a second model that fails to do so. In this instance, the
two-group linear factor model requiring only configural
invariance provides perfect fit (through the parameter trans-
lation given in Equation 8 and the Appendix).2 In contrast,
a model imposing either weak or strong factorial invariance
will fail to fit, as shown in Equation 9, and it is this
discrepancy in fit that is used to calculate the power of the
likelihood ratio test at various sample sizes (see Satorra &
Saris, 1985; for extensions to multiple groups models, see
Hancock, 2001, and Kaplan, 1989). One complication of
this approach is that it assumes multivariate normality for
the indicators, a condition that will not hold here given the
quadratic relation of the fifth indicator to the factor. The
nonnormality will be mild and hence can be expected to
have little impact on the likelihood ratio test, but prudence
dictates that an empirical approach to power estimation also
be taken. As such, for each cell of the design, 500 data sets
were simulated and fit by each model and the proportion of
likelihood ratio tests rejected for each condition was tabu-
lated. Data were simulated using the SAS data system and
all models were fit in Mplus 3 (Muthén & Muthén, 2004).
For all models, x1 was chosen as the anchor indicator to set
the scale of the latent factors.

The question of most interest was under what conditions
would tests of measurement invariance be rejected if a
linear factor model (fixing � � 0) was fit to the data? The
first test considered was the likelihood ratio test between a
model imposing weak factorial invariance relative to a
model imposing only configural invariance (a 4-df test).
Figure 2 shows the power curves obtained from both the
analytical approach and the Monte Carlo study (using an �
level of .05). The estimates from both approaches were
quite consistent. When the factor mean difference was small
(�(2) � �(1) � .25), the rejection rate was relatively low
even at the highest level of curvature considered here (i.e.,
under 25%). However, as �, �(2) � �(1), and N increased,
the probability of rejecting the equality constraints on the
factor loadings also increased. The most extreme pairing of
values is represented by the solid line in the lower right

2 An anonymous reviewer helpfully pointed out that this would
allow for the analytical approach to power estimation used here.

2- .5

1- .5

0- .5

.0 5

.1 5

.2 5

.3 5

2- 1- 0 1 2 3

j

x5

upoP noitcnuF noital

noissergeR raeniL
puorG 1 

noissergeR raeniL
puorG 2 

Figure 1. Linear regression of an item (x5) on a factor (�) in each
of two groups (solid lines) when the population generating func-
tion is truly quadratic (dashed line; � � �.10) and the standard-
ized effect size of the factor mean difference is d � 1.0.
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panel of Figure 2, and these are also the values depicted in
Figure 1. Although the curvature of the population function
shown in Figure 1 appears quite modest, a linear model fit
to this function that imposes weak measurement invariance
would be rejected approximately 44% of the time in favor of
one imposing only configural invariance even with a sample
size of just 100 cases per group. At a sample size of 200
cases per group, the rejection rate rises to 78%. The rejec-
tion rate approaches 100% at sample sizes of 400 and 800
cases per group.

The second test considered was the likelihood ratio test
between a model imposing strong factorial invariance rela-
tive to a model imposing only weak factorial invariance
(again a 4-df test). These results are not shown because the
power hovered at about .05 in all conditions, or quite close
to the designated � level. This pattern of results was initially
surprising because, in addition to requiring loading equality,
strong factorial invariance requires intercept equality, a
condition that Equation 9 suggests would not hold for x5.
However, subsequent exploration of the results showed that
the intercepts estimated for x5 under weak factorial invari-
ance tended to converge to similar values, despite the fact

that they were not forced to be equal (because of the
imposition of equality on the factor loadings for this indi-
cator).3 Adding formal equality constraints to these esti-
mates then produced little further misfit, and hence they
were not rejected. The chi-square test of overall fit for the
strong invariance model continued to result in rejection
rates that followed the same trends in Figure 1. Freely
estimating the loadings and intercepts for x5 in both groups
(i.e., permitting partial invariance) resulted in good overall
model fit in all conditions.

These results may be considered conservative because the
values of � used in the simulation appear to be small and
only one in five indicators was nonlinearly related to �.
Extrapolating from these results, it can be expected that
even greater curvature in the regression of x5 on � would
lead to high rejection rates in smaller samples and with a
smaller factor mean difference. Furthermore, the import of
the single nonlinear indicator is to some extent obscured by

3 The expected intercept differences were observed when the
model imposed only configural invariance.

Figure 2. Test of weak invariance for the linear factor model (i.e., 	(1) � 	(2)). Lines reflect
analytical power estimates; points reflect empirical power estimates obtained from the Monte Carlo
study. Power is plotted as a function of within-group sample size.

310 BAUER



the presence of four other linear indicators. A higher ratio of
nonlinear to linear indicators would result in still higher
rates of rejection for tests of factorial invariance and require
further release of equality constraints on the factor loadings
and intercepts to obtain good model fit. In addition to
allowing partial invariance for these indicators, to attain
good overall model fit, the investigator may also be forced
to make post hoc model modifications to account for the
unexplained covariance between the indicators due to the
omitted nonlinear effect, such as allowing correlated resid-
uals or introducing an additional common factor (see
Appendix).

Limitations and Conclusions

The results presented here are necessarily limited in a
number of respects. First, to aid in the analytical derivations,
within-group normality and a quadratic factor-to-indicator
relationship was assumed. Although the exact results given
in Equations 8 and 9 would not hold for other population
models, other nonlinear functions would similarly affect
invariance testing with the linear factor model. That is, for
each group, the linear factor model will provide a first-order
approximation to the portion of the nonlinear function rep-
resented in that group’s data. If the data for the two groups
cover different regions of the nonlinear function, for in-
stance by differing in their factor means, then the linear
approximations obtained for the two groups will differ in
their intercepts and slopes (factor loadings).

A second limitation of the present research is the scope of
the power study, which was restricted to one of many
possible population models. Despite this limitation, the re-
sults were nevertheless clear and consistent with the ana-
lytical derivations. Apparently modest curvature in the re-
lationship of a single indicator to the factor can result in the
rejection of tests of measurement invariance, particularly as
the factor mean difference increases and the sample size
grows. Given the strong dependence of these results on the
factor means, explained analytically by Equations 8 and 9
for the quadratic case, this problem will most likely arise in
those applications in which a large factor mean difference is
expected. Such situations might include the comparison of
age groups, pre- and posttest scores in an intervention study,
or ethnic groups assessed by culturally sensitive measures,
that is, in precisely those circumstances that we most wish
to meet the requirement of measurement invariance so that
we can compare the factor means unambiguously. Even
when the factor mean difference is not of central concern,
for instance when interest centers on whether the indicators
are functioning similarly across groups or time, concluding
that there is partial invariance may lead to substantively
erroneous conclusions (e.g., that there are cultural differ-
ences in the interpretation of the measure) if the relationship
is really invariant but nonlinear.

Recommendations

The implication of these results for empirical applications is
that, when measurement invariance is rejected in a linear factor
model, the reason may be that the true factor-to-indicator
relationship is nonlinear, as opposed to inequality of measure-
ment. Substantive theory may provide an indication of which
of these two possibilities is most likely. In other cases, re-
searchers will have to try to infer the more realistic model from
the data. One preliminary strategy is to examine a scatterplot
matrix of the observed variables. Nonlinear relationships be-
tween the observed variables indicate that the linear factor
model is inappropriate and a nonlinear factor model should be
considered (Yalcin & Amemiya, 2001). Interpretation of the
scatterplot matrix may also be aided by superimposing loess
(or lowess) regression lines against the data points (Cohen,
Cohen, West, & Aiken, 2003, pp. 111–114). Loess regression
locally weights the data points to provide a smooth nonpara-
metric curve describing the relationship between each pair of
variables (Cleveland, Devlin, & Grosse, 1988). Figure 3 dis-
plays such a plot with one of the simulated data sets (a single
factor model with a quadratic effect on the fifth indicator, � �
�.1, �(2) � 1, and N(g) � 200). As can be seen, the scatterplots
for x1, x2, x3, and x4 all appear linear, whereas the plots for x5

show slight but consistent curvature. From the scatterplot ma-
trix alone, however, it is difficult to assess whether this curva-
ture reflects a common nonlinear effect or differential linear
relations in the two groups.

To obtain better resolution on this relationship, x5 was
regressed on x1, x2, x3, and x4 to generate predicted values.
The predicted values for x5 represent an optimal linear
combination of x1, x2, x3, and x4 and capture variance in x5

that is shared with these other indicators. Given that these
indicators all load on a single factor, this shared variance is
due to the common influence of that factor (assuming the
residuals of the factor model are uncorrelated). Thus, the
predicted values for x5 are similar to factor score estimates.
Similarly, the residuals from the linear regression of x5 on
the other indicators represent estimates of the residuals from
the linear regression of x5 onthe latent factor, or �*5. These
residuals include a unique component as well as model
error, as shown in Equation 11 of the Appendix.4 It is the
model error due to the use of a linear equation that we seek
to identify. The left panel of Figure 4 thus plots the observed
values of x5 against the predicted values. To highlight
potentially nonlinear effects, a loess line is again fit to the
data. As can be seen, although the data points are shifted to
the right for the second group (consistent with the higher
factor mean for this group), the nonlinear relationship be-

4 Alternative methods of estimating factor scores and observa-
tional residuals were also evaluated (as discussed by Bollen &
Arminger, 1991), but these more complex methods did not per-
form as well as the method presented here.
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tween x5 and the other indicators appears to be shared by
both groups. This nonlinear trend is also evident in the
right panel of Figure 4, which plots the residuals for x5

versus the predicted values (i.e., removing the linear
relationship). Overall, these procedures correctly identi-
fied x5 as the sole nonlinear indicator and hence appear to
be useful in diagnosing potential nonlinear effects in the
factor model.

A more general two-step strategy to diagnosing non-
linear effects in a factor model would be as follows. First,
produce a scatterplot matrix from all of the indicators of
a single factor, as in Figure 3. On the basis of this matrix,
partition the factor indicators into two subsets, one subset
within which all indicators appear to be linearly related to
one another, and another subset for which the assumption
of linearity is more dubious. Second, regress each indi-
cator in the second subset on all of the indicators in the

first subset within a multiple linear regression model.
Save the predicted values and residuals from the regres-
sion model to produce diagnostic plots such as Figure 4
for each questionable indicator. Use these plots to aid in
judging whether there is a nonlinear relationship between
the indicator and factor or there are linear relationships in
each group with different slopes. In the latter case, a
linear factor model with partial invariance may be called
for. In the former case, however, one must address the
nonlinear nature of the relationship. Two options for
doing so can be considered: applying a nonlinear trans-
formation to the indicator to make the relationship more
linear, so that the original model structure can be re-
tained, or revising the model structure to include the
nonlinear effect. If one selects the latter option and
proceeds to estimate the nonlinear factor model, it would
seem most reasonable to select an indicator from the first

Figure 3. Scatterplot matrix and loess regression lines fit to the aggregated data from the two
groups. Note the slight but consistent curvature in the relation of x5 to the other factor indicators.
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subset to serve as the anchor for scaling the latent factor.
If there are multiple factors in the model, these proce-
dures could be repeated for the indicators of each factor
in turn.

Unfortunately, given compelling evidence of nonlin-
earity in factor-to-indicator relationships, it has, until
recently, been relatively difficult to fit a nonlinear factor
analysis model. Following the early contributions of Mc-
Donald (1967), Etezadi-Amoli and McDonald (1983),
and Mooijaart and Bentler (1986), however, new methods
of estimation for nonlinear structural equation models
have been developed, including the maximum-likeli-
hood-based methods of Klein and Moosbrugger (2000),
Klein and Muthén (2003), Lee and Zhu (2002), and
Yalcin and Amemiya (2001); the method of moments
approach of Wall and Amemiya (2000); and the Bayesian
approaches of Arminger and Muthén (1998) and Zhu and
Lee (1999). Of these methods, the approximate maxi-
mum-likelihood approach of Klein and Moosbrugger
(2000) has been incorporated into the commercial soft-
ware program Mplus and can be used with multisample
models (Muthén & Muthén, 2004). To my knowledge,
this is the only software presently available that permits
the simultaneous estimation of a nonlinear factor model
in two or more groups. Examples of Mplus input files are

provided at http://dx.doi.org/10.1037/1082-989X.10.3
.305.supp showing the specification of a quadratic effect
in a factor model fit to the simulated data set shown in
Figures 3 and 4. It should be noted, however, that the
Klein and Moosbrugger approach in Mplus is limited to
the estimation of quadratic functions (or, in other con-
texts, product interaction models), whereas some other
approaches to nonlinear factor analysis permit the esti-
mation of more complex functions (but have not yet been
extended to the analysis of multiple samples). If a more
complex function is required, it may be necessary to
conduct a nonlinear factor analysis in each group inde-
pendently and then compare the obtained estimates in a
more-or-less ad hoc manner.

Two other issues are also worth considering when estimat-
ing nonlinear factor models. First, some methods for fitting
nonlinear factor models are more reliant on the assumption of
normality for the latent factors than others. For these methods,
failure to meet the assumption of normality may increase the
risk of identifying spurious nonlinear effects (see Marsh, Wen,
& Hau, 2004). Second, as in multiple regression analysis
(Aiken & West, 1991, chap. 5), grand mean centering may
prove useful for interpretational and computational reasons
when modeling nonlinear effects.

Figure 4. Plot of raw scores (left) and residuals (right) for indicator x5 against predicted values for
x5 obtained from the optimal linear combination of x1, x2, x3, and x4. Data points for the two groups
are distinguished by different symbols (o’s for Group 1 and x’s for Group 2). The line superimposed
on each plot is obtained from a loess fit to the aggregated data.
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Appendix

Derivation of Equation 8

This appendix provides a proof of Equation 8 and some addi-
tional results using standard rules of covariance algebra (see Bol-
len, 1989, pp. 21–23), the moments of the normal distribution
(Weisstein, 1999), and expectations of products of normal distri-
butions (Benton, Hand, & Crowder, 2004; Goodman, 1960). To
begin, let us assume that the true factor-to-indicator relationship is

x � � � �� � ��2 � �. (A1)

In addition, let us make the common assumptions that the latent
variable � is normally distributed with mean � and variance 	, that
� is also normally distributed with mean 0 and variance �, and that
� is uncorrelated with �.

Now suppose that the form of the fitted model posits that x is
linearly related to � such that

x � �* � �*� � �*. (A2)

Because of the omission of the �2 predictor, the coefficients �* and

�* will differ from � and � from Equation A1. The residuals from
the regression, �*, will also differ from � and hence the variance
of �*, denoted �*, will differ from �.

The coefficient �* can be solved for by noting that

�* �
COV��, x�

VAR���
�

E��x� 
 E��� E� x�

	
. (A3)

To solve for �*, let us first substitute for x using Equation A1. The
first term in the numerator of Equation A3 then becomes

E��x� � E���� � �� � ��2 � ���

� E��� � ��2 � ��3 � ���

� �E��� � �E��2� � �E��3� � E����

� �� � ���2 � 	� � ���3 � 3�	� � 0

� �� � ��2 � �	 � ��3 � 3	��. (A4)

(Appendix continues)
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A similar substitution in the second term of the numerator yields

E��� E� x� � E��� E�� � �� � ��2 � ��

� E����� � �E��� � �E��2� � E����

� ��� � �� � ���2 � 	� � 0�

� �� � ��2 � ��3 � 	��. (A5)

Subtracting Equation A5 from Equation A4 and inserting the result
into Equation A3 gives

�* �
�	 � 2	��

	
� � � 2��, (A6)

as indicated in Equation 8. Here it is important to note that if the factor
is scaled by setting the mean to zero, then �* will equal �. As an
interesting aside, this is also the result one would obtain by taking the
first derivative of Equation A1 with respect to � and evaluating at the
mean of �, or �. That is, the slope given by Equation A6 is also the
slope of the tangent line to the true quadratic function at the mean (see
also Aiken & West, 1991, p. 65).

In a similar way, the coefficient �* can be determined by drawing
on the familiar equation for the intercept of a regression line:

�* � E� x� 
 �*E���

� E�� � �� � ��2 � �� 
 �*E���

� � � �E��� � �E��2� � E��� 
 �*E���

� � � �� � ���2 � 	� � 0 
 �*�. (A7)

Substituting for �* via Equation A6, Equation A7 can be rewritten
as

�* � � � �� � ���2 � 	� 
 �� � 2����

� � � �� � ��2 � �	 
 �� 
 2��2

� � � �	 
 ��2

� � � ��	 
 �2�, (A8)

as also indicated in Equation 8.
Interest may also center on the change in the residual variance

as a function of the model misspecification. To determine this, the
residuals �* must be expressed in terms of the original model
parameters. Equations A1 and A2 show that

�* � x 
 ��* � �*��

� �� � �� � ��2 � �� 
 ��* � �*��

� � � ��� � �� � ��2� 
 ��* � �*���. (A9)

The grouping of terms given on the third line of Equation A9 has
the intuitively pleasing interpretation that the residuals of the
misspecified model are equal to the original residuals plus the
discrepancy between the true and fitted regression function. That
is, the residuals include both random error and model error. Sub-

stituting the results given in Equations A6 and A8 for �* and �*
and subsequent simplification then yields

�* � � � � � �� � ��2 
 �� � ��	 
 �2� � �� � 2�����

� � � ���2 
 2�� 
 	 � �2�. (A10)

The reader can verify that E(�*) is zero.
Using the prior results, and assuming normality of �, the vari-

ance of �*, denoted �*, can be expressed as

�* � E��*2�

� E
�� � ���2 
 2�� 
 	 � �2��2�

� E��2� 
 4��E���� 
 2	�E��� � 2�2�E��� � 2�E��2��

� 4�	�2E��� � �4�2 � 	2�2 � �2E��4� 
 2�2	�2


 4��2E��3� 
 4�3�2E��� 
 2	�2E��2� � 6�2�2E��2�

� � � 4�	�2� � �4�2 � 	2�2 � �2��4 � 6�2	 � 3	2�


 2�2	�2 
 4��2��3 � 3�	� 
 4�3�2�


 2	�2��2 � 	� � 6�2�2��2 � 	�

� � � 2	2�2. (A11)

As one would expect, Equation A11 implies that �* � � for all
values of 	 and �, with the inequality increasing with the degree
of curvature in the true relationship and the degree of dispersion of
the latent factor. That �* does not depend on the factor mean is a
consequence of the symmetry of the quadratic function: A linear
approximation will perform equally well at all points on the
quadratic function. For other nonlinear functions, a linear approx-
imation may vary in quality depending on what portion of the
nonlinear function is being approximated (i.e., how nonlinear that
portion of the function is). Hence, for other functions, �* may also
depend on the factor mean.

Using derivations similar to Equation A11, it is also possible to
show that if two indicators, say x1 and x2, are both quadratically
related to the latent factor �, then the covariance of the residuals
obtained from fitting a partially invariant linear factor model will
equal

COV��*1, �*2� � COV��1, �2� � 2	2�1�2, (A12)

where the subscripts differentiate the residuals and quadratic ef-
fects for the two indicators. If local independence holds in the
population and COV(�1, �2) � 0, then this reduces to COV(�*1,
�*2) � 2	2�1�2. It is this apparent common variance unexplained
by the linear factor model that can lead to the estimation of
so-called difficulty factors to obtain good overall model fit. Alter-
natively, post hoc model modifications to allow for correlated
residuals would also produce good model fit, in effect obscuring
the misspecification of the nonlinear factor-to-indicator relation-
ships. Note that in the multiple group context, if the factor vari-
ances differ between groups (or the quadratic effects), then the
residual covariance will also differ.
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