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The graphical presentation of any scientific finding enhances its description, in-

terpretation, and evaluation. Research involving latent variables is no exception,

especially when potential nonlinear effects are suspect. This article has multiple

aims. First, it provides a nontechnical overview of a semiparametric approach to

modeling nonlinear relationships among latent variables using mixtures of linear

structural equations. Second, it provides several examples showing how the method

works and how it is implemented and interpreted in practical applications. In

particular, this article examines the potentially nonlinear relationships between

positive and negative affect and cognitive processing. Third, a recommended dis-

play format for illustrating latent bivariate relationships is demonstrated. Finally,

the article describes an R package and an online utility that generate these displays

automatically.

Nonlinear modeling in the context of applied behavioral and social science

research has been a useful tool for understanding, describing, and predicting

myriad phenomena. One classic example is the Yerkes-Dodson, law which states

that with increasing levels of cognitive arousal, performance increases, plateaus,

and then decreases (Yerkes & Dodson, 1908). A more contemporary example

is the finding by Lubinski and Humphreys (1990) that scores below the mean

on a general mathematics aptitude test show little relationship to exceptional
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408 PEK, STERBA, KOK, BAUER

mathematical talent, perhaps reflecting a general lack of prerequisite knowledge

for acquiring sophisticated skills, whereas variation above the mean becomes

increasingly informative. The result is that the relationship between the two

variables is described by a concave up, positively accelerated curve. In this

article, we are concerned with identifying and modeling nonlinear relationships

such as these when the variables involved are latent rather than observed.

For observed variables, a widely used strategy for diagnosing and modeling

nonlinear effects is to examine bivariate scatterplots for evidence of nonlin-

earity. Such displays can be greatly enhanced by using the LOWESS method

(Cleveland, 1981) to produce an estimate of the potentially nonlinear regression

function for the two variables (Cohen, Cohen, West, & Aiken, 2003, pp. 110–

114). A desirable feature of LOWESS is that the analyst need not specify a

particular form for the regression function (e.g., quadratic, cubic, exponential,

etc.). The global regression function is obtained by smoothing over locally linear

regression estimates computed at each observed value of the predictor. Each

locally linear regression is estimated using only neighboring data points weighted

by their proximity to the predictor value under consideration. Unfortunately,

this approach cannot be applied directly when the relevant variables are latent,

given the absence of specific observed values for the predictor or outcome.

Recently, however, Bauer (2005) suggested an analogy to LOWESS regression

for modeling nonlinear relationships among latent variables.

Bauer’s (2005) semiparametric modeling approach involves fitting a Struc-

tural Equation Mixture Model (SEMM) to the data (Arminger & Stein, 1997;

Arminger, Stein, & Wittenberg, 1999; Dolan & van der Maas, 1998; Jedidi, Jag-

pal, & DeSarbo, 1997a, 1997b; B. O. Muthén, 2001). The general notion behind

the SEMM is that the observed data arises from a mixture of component (or

class) distributions where each component is characterized by a distinct structural

equation model. Bauer’s (2005) approach to modeling nonlinear relationships

using SEMMs draws on the fact that the regression of one latent variable on

another is linear within each component of the mixture, analogous to the locally

linear estimates used in LOWESS. Also like LOWESS, a potentially nonlinear

global regression function can be obtained by smoothing over the locally linear

regression estimates for the components.1 In this case, the smoothing is accom-

plished using weights based on the locations of the component distributions. For

instance, Figure 1 shows how this approach can recover a U-shaped relationship

between two latent variables using three latent classes. The mean of the latent

1Note that this use of the SEMM involves no assumption that the component distributions, often

referred to as latent classes, reflect true groups within the population. The mixture is estimated

only as a statistical expedience to obtain an estimate of the global regression function. This type of

mixture application has been referred to as “indirect” by Titterington, Smith, and Makov (1985), in

contrast to “direct” applications aimed at modeling population heterogeneity.
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NONLINEAR RELATIONS AMONG LATENT VARIABLES 409

FIGURE 1 Plots of the three locally linear regression estimates and the nonlinear

regression of ˜2 on ˜1 .

predictor is lowest in Class 1, followed by Classes 2 and 3. The aggregate

function thus hugs the regression line for Class 1 at low levels of the latent

predictor, shifts toward the line for Class 2 at the midrange, and then follows

the line for Class 3 when the value of the latent predictor is high.

Drawing further on the analogy to LOWESS, the number of component dis-

tributions specified for the SEMM corresponds roughly to setting the smoothing

parameter in the LOWESS procedure; adding too many components is like

setting the smoothing parameter too small—the regression line may be jagged

due to overfitting of chance variation in the data—whereas choosing too few

components is akin to setting the smoothing parameter too high, which may

obscure the nonlinear trends of interest. To determine the optimal number of

components for the SEMM, one can compare models with different numbers

of components using information criteria. Additionally, the within-component
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410 PEK, STERBA, KOK, BAUER

variances for the latent predictors relate to the neighborhood of points used in

LOWESS; larger variances imply that a larger neighborhood of points contributes

to the estimation of the locally linear relationship. An important difference

between the LOWESS and SEMM methods, however, is that LOWESS is fully

nonparametric whereas the SEMM method is semiparametric, based on a very

flexible statistical model. The SEMM method (unlike LOWESS) can thus be

used to formally test for nonlinear effects in return for minimal distributional

assumptions.2

Advantages of using SEMMs for modeling nonlinear relationships between

latent variables are that it can recover global relationships of unknown form

and does so without assuming that the latent variables are normally distributed.

In contrast, other methods for modeling nonlinear relationships among latent

variables require specification of the global regression function (i.e., as a low-

order polynomial such as a quadratic), and many also assume normality for the

distribution of the latent predictor (e.g., Jaccard & Wan, 1995; Jöreskog & Yang,

1996; Kenny & Judd, 1984; Klein & Muthén, 2007; Mooijaart & Bentler, 1986;

Ping, 1996). In addition to being of value on its own, the SEMM approach may

thus also be a useful precursor to implementing these other methods, as it would

enable evaluation of these assumptions.

Despite these advantages of the semiparametric approach, we are aware of

no applications of this approach since the publication of Bauer (2005). We

suspect that there are four primary reasons for this lack of implementation

in applied work, all of which we seek to address in this article. First, the

description of this method by Bauer (2005) may be excessively technical for

many researchers. In this article, we thus provide a more expository account of

the method. Second, Bauer (2005) provided relatively few empirical examples

of the technique upon which others might model their own applications. Here

we provide a number of examples aimed at illustrating both how the technique

works and how it might be implemented and interpreted in practical analyses. In

particular, we examine the potentially nonlinear relationship between affect and

cognitive processing using data from a study of emotion. Third, Bauer (2005)

did not provide a clear recommendation for how the information obtained from

the semiparametric approach should be displayed. Here we demonstrate what

we regard to be an optimal display format for depicting bivariate relationships.

Fourth, and perhaps most important, there has been no software available to

2A second analogy may be drawn with nonparametric regression splines for observed data where

a global curve is obtained by joining knot points together with a piecewise polynomial function

(Smith, 1979; Wold, 1974). The number of knot points functions similar to the number of components

in the SEMM approach. Spline functions, however, partition the data between user-defined knots

into nonoverlapping sets to fit pieces of the function, whereas in SEMM the components overlap

and their locations (means) are estimated rather than fixed. The overlap permits smoothing from

one within-component linear function to another, unlike, for instance, a piecewise linear model.
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NONLINEAR RELATIONS AMONG LATENT VARIABLES 411

generate such displays. Although software is readily available for fitting SEMMs

(e.g., Mx; Neale, Boker, Xie, & Maes, 2003; Mplus; L. K. Muthén & Muthén,

2007; MECOSA in Arminger, Wittenberg, & Schepers, 1996), the evaluation

of nonlinear effects requires considerable post-processing of the model results.

Indeed, the manipulation of results required to produce plots of the nonlinear

effects may be tedious and daunting even for experienced Structural Equation

Model (SEM) users. To overcome this difficulty, we provide two plotting utilities

to generate these plots automatically.

The outline of our article is as follows: First, we provide a basic overview of

the linear SEM and describe Bauer’s (2005) semiparametric modeling approach.

Next, we introduce an online calculator and an R package, plotSEMM, which

generate and plot the potentially nonlinear regression function as well as aux-

iliary information that can facilitate interpretation. Several examples are then

provided to illustrate the approach, to demonstrate the recommended display

format for the results, and to show how the plotting utilities may be used

to produce these displays. In addition to simulated data examples, we also

analyze data from a study of emotions and well-being to evaluate the relationship

between affect and decision making. Of specific interest are the potentially non-

linear relationships between positive and negative affect and cognitive heuristic

processing.

THE LINEAR STRUCTURAL EQUATION MODEL

For simplicity, in this section we present the linear structural equation model

for one latent predictor, ˜1, and one latent outcome, ˜2. The following develop-

ments, however, would also be applicable for evaluating bivariate relationships

embedded in more complex models.

The measurement models for the latent factors may be defined as

y1i D �1 C œ1˜1i C ©1i

y2i D �2 C œ2˜2i C ©2i ;
(1)

where y1 and y2 are vectors of observed variables measuring the latent predictor

and latent outcome, respectively. The intercepts and slopes for the regression of

the observed variables on the latent variables are contained in the vectors � and

œ, respectively, with subscripts indicating the referent observed variables. The

residuals are represented by ©1i and ©2i and have expected values of zero and

a joint covariance matrix ‚. Typically, but not necessarily, ‚ is constrained

to be diagonal, reflecting the assumption that the observed variables are locally

independent, conditioning on the latent variables.
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412 PEK, STERBA, KOK, BAUER

The latent variable model is then

˜1i D ’1 C —1i

˜2i D ’2 C “21˜1i C —2i ;
(2)

where the mean and variance of the latent predictor are ’1 and VAR.—1i / D

§11, and the intercept, slope, and residual variance for the linear regression of

the latent outcome on the latent predictor are ’2, “21, and VAR.—2i / D §22,

respectively. The residuals —1 and —2 are assumed to be uncorrelated with each

other and with ©1 and ©2.

Equations 1 and 2 imply a specific mean structure and covariance structure

for the complete vector of observed variables (Bollen, 1989). By convention,

the model-implied mean vector and covariance matrix are designated as �.™/

and †.™/, respectively, where ™ is the vector of model parameters. If we add to

Equations 1 and 2 the assumption that all residuals (i.e., —1, —2, ©1, and ©2) are

normally distributed, then the linear form of the model implies that the observed

variables will also have a joint normal Probability Density Function (PDF),

which we designate ¥ŒyI �.™/; †.™/�. This PDF provides the basis for maximum

likelihood estimation of the parameters of the model. A more extensive treatment

of the standard structural equation model can be obtained from Bollen (1989),

Kaplan (2000), or Kline (2005), among other texts.

For the current purposes, it is worth emphasizing that a key assumption of the

standard SEM, embodied in Equation 2, is that the latent predictor and the latent

outcome are linearly related. We now show one way to relax this assumption

by moving to the SEMM.

SEMIPARAMETRICALLY MODELING NONLINEAR

EFFECTS VIA SEMMS

The SEMM assumes that the observed data were obtained from a mixture of

K multivariate normal distributions, each parameterized via a linear SEM. It is

common to refer to each component normal distribution as a latent class, and

we use the two terms interchangeably here without implication that the latent

classes represent literal groups. The goal in fitting a SEMM is to estimate both

the SEM model parameters for each latent class (some of which may take on

unique values and others of which may be constrained to equality over classes)

and the mixing probabilities for the classes. In the following, we designate the

probability of membership in class k D 1; 2; : : : ; K as  k , where
P

K

kD1
 k D 1.

For our purposes, we assume that the SEM specified for each class is of the

same form (i.e., has the same zero and nonzero paths). Additionally, we constrain

the measurement model presented in Equation 1 to be strictly invariant over latent

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
r
t
h
 
C
a
r
o
l
i
n
a
 
G
r
e
e
n
s
b
o
r
o
]
 
A
t
:
 
2
0
:
3
7
 
3
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



NONLINEAR RELATIONS AMONG LATENT VARIABLES 413

classes so that the latent variables are equivalently defined for all individuals

in the population (Meredith, 1993).3 Only the parameters involved in the latent

variable model must differ over latent classes to model nonlinear effects between

latent variables. Specifically, Equation 2 is modified to be

˜1i D ’1k C —1i

˜2i D ’2k C “12k˜1i C —2i ;
(3)

where the class mean and variance of the latent predictor are ’1k and VAR.—1i / D

§11k , respectively, and the intercept, slope, and residual variance for the within-

class linear regression of the latent outcome on the latent predictor are ’2k, “21k,

and VAR.—2i / D §22k , respectively. The only difference from the standard SEM

is that these parameters, defining the joint distribution of the latent variables,

differ over latent classes. Note that —1i and —2i are still assumed to be uncorre-

lated. In addition, across-class equality constraints on the variance parameters

§11k and §22k can be helpful for avoiding problems of estimation.

From Equation 3 it follows that the expected value of the latent outcome ˜2

within each latent class is

Ek Œ˜2j˜1� D ’2k C “21k˜1: (4)

Thus the relationship between the latent variables is locally linear within the

latent space characterized by each specific class. The global relationship between

the latent variables obtained by aggregating across the mixing components

is, however, nonlinear, given the differential weighting of these locally linear

relationships over the range of the latent predictor, that is, as the value of ˜1

moves across the latent space. More specifically, aggregating across the mixing

components, we obtain the global regression function

EŒ˜2j˜1� D

K
X

kD1

. k j˜1/Ek Œ˜2j˜1�; (5)

where

 kj˜1 D
 k¥k.˜1I ’1k; §11k/

K
X

kD1

 k¥k.˜1I ’1k; §11k/

; (6)

3The assumption of strict measurement invariance over classes is consistent with the standard

single-group SEM, which assumes strict measurement invariance for all individuals. Because the

classes are not believed to represent distinct groups of individuals in this type of SEMM application,

this assumption is retained for parsimony.
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414 PEK, STERBA, KOK, BAUER

¥.�/ again indicates the normal PDF, and  kj˜1 represents the conditional

probability of class membership given a set value for the latent predictor. Note

that the numerator of Equation 6 is the weighted marginal distribution of ˜1

for Class k, whereas the denominator is the marginal mixture distribution of

˜1 across classes. The global regression function in Equation 5 is obtained

by smoothing over the local linear regressions within each class as expressed

in Equation 4 using the localized weights in Equation 6. These weights are

mixing probabilities that reflect the dominance of Class k at varying levels of

˜1. When a specific value for ˜1 is examined that is located near the mean

of a particular component distribution, then that component will usually have

the highest conditional mixing probability. The expected value for ˜2 computed

from Equation 5 will then be determined largely by the locally linear relationship

estimated within that class. Likewise, if a value of ˜1 is examined that lies

between two components then the expected value computed from Equation 5 will

generally be a more equitably weighted combination of the within-component

expected values. Hence, changes in  kj˜1 over the range of ˜1 allow the global

function is Equation 5 to move smoothly from one locally linear relationship to

another.

It is important to recognize that this approach does not presume a nonlinear

relationship must exist. Bauer (2005) noted two alternative sufficient conditions

for Equation 5 to reduce to a linear function (aside from the trivial case when

K D 1):

Condition A: The distribution of the latent predictor is the same in each latent

class, that is, ’1k and §11k are equal across classes.

Condition B: The within-class regression line obtained for each class is the

same, that is, ’2k and “21k are equal across classes.

Each condition can be evaluated by a likelihood ratio test. If either likelihood

ratio test is nonsignificant, then the null hypothesis of a linear relationship cannot

be rejected. If both are significant, this suggests that the relationship may be

nonlinear and it will be of interest to graphically evaluate its form.4

In practice, computing and plotting the semiparametric regression function

defined in Equation 5 involves nontrivial programming to post-process the re-

sults obtained from fitting SEMMs to the data. Moreover, the interpretation

of this relationship can be enhanced by plotting the model-implied marginal

and bivariate distributions of the latent variables. Such plots can reveal areas

4Although there are no other obvious ways for Equation 5 to reduce to a strictly linear function,

we have observed in practice that the aggregate function implied by Equation 5 can sometimes

appear roughly linear even when conditions A and B are rejected. For instance, one component may

be so small that the aggregate function is minimally influenced by the presence of this component.
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NONLINEAR RELATIONS AMONG LATENT VARIABLES 415

of sparseness in the latent space where one would exercise caution in making

interpretations of the regression function or they can show discontinuities that

would preclude using a smoothing function like Equation 5. For these reasons,

we provide a set of utilities that produce these plots automatically given input

of the estimated mixing probabilities and latent variable model parameters for

the latent classes.

PLOTTING UTILITY

We have developed two tools for users wishing to use the technique described

earlier for assessing potentially nonlinear relationships among latent variables.

Each utility produces the same graphs, and both are based on code written in

R, but the first is geared toward R users and the second toward non R users.

The first option is an R package called plotSEMM, which is a set of functions

used to generate the plots described earlier given input of some of the parameter

estimates from an SEMM analysis. This package has to be run within the R

environment. R is a free software environment for statistical computing and

graphics and can be downloaded from http://cran.r-project.org/ For R users,

the add-on plotSEMM package has the advantage of saving plots in file types

supported by R, which include portable document format (PDF), postscript, and

Metafile, among others. The plotSEMM package is also more flexible than the

online utility, providing more graphics options, and the code is open source,

permitting user modifications. For users unfamiliar with R, however, the online

utility, located at http://www.unc.edu/psychology/dbauer/plotSEMM.htm, may

be more appealing. The online interface dynamically generates R code based on

user inputs and submits it to Rweb, a Web-based interface to R. This utility is

readily accessible and circumvents the need to install R on one’s computer or

learn how to write R commands.

With both utilities, two plots will be generated. The first plot superimposes

the smoothed regression function obtained by Equation 5 on the model-implied

bivariate contour plot for the two latent variables. The model-implied marginal

distributions of the latent predictor and outcome are shown above and to the right

of the bivariate plot. Additionally, the locally linear (within-class) regression

functions and within-class marginal distributions for the latent variables are also

plotted, although these features can be suppressed if desired. The second plot

shows the mixing probabilities conditional on the value of the latent predictor,

as generated by Equation 6. The marginal distribution of the latent predictor

is shown on this plot as well. This second plot is not essential but can aid

in understanding how the global regression function shown in the first plot is

generated. The only information required by plotSEMM and the online utility

is a subset of the parameter estimates generated by the program originally used
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416 PEK, STERBA, KOK, BAUER

to fit the SEMM to the data. We now describe each plotting option in greater

detail.

plotSEMM

User input. For plotSEMM, the user needs to specify six vectors of model

estimates, each containing K elements (where K is the number of classes esti-

mated in the user’s final SEMM model). These vectors are specified to include

(a) the marginal class probabilities,  k ; (b) the class means for the latent predic-

tor, ’1k ; (c) and (d) the intercepts and slopes from the within-class regression of

the latent outcome on the latent predictor, ’2k and “21k, respectively; (e) the

within-class variances of the latent predictor, §11k; and (f) the within-class

residual variances of the latent outcome, §22k.

R functions and controlling output. To invoke the functions in plotSEMM,

the user first calls the setup function, which requires six arguments that corre-

spond to the six vectors. These vectors must be entered in the order specified

previously. The user may then call two plotting functions as well as the legend

function. plotSEMM_contour plots the global regression function, the locally

linear within-class regression lines, and the model-implied bivariate and marginal

distributions of the latent variables. plotSEMM_probability plots the mixing

probabilities as a function of the latent predictor (i.e., the weights generated

through Equation 6 for aggregating over the within-class regression lines) and

again presents the marginal distribution of the latent predictor for reference.

plotSEMM_legend generates the legend associated with these plots.

The plotting functions allow the user to specify labels for the latent variables.

By default, the latent predictor and outcome are labeled “Eta1” and “Eta2,”

respectively, and the class-specific regression lines and marginal distributions

will be shown. However, users can choose to suppress class-specific information

in plotSEMM_contour. An example script file for inputting data in vectors,

calling the setup function and using the plotting functions, is provided in Ap-

pendix A. The plotSEMM source code, documentation, and example files are

readily downloadable at http://cran.r-project.org/

Online Utility

User input. The online utility provides almost the same functionality as

the plotSEMM package within a graphical user interface that obviates the need

for experience using R. Figure 2 presents a screen shot of the utility. Unlike

plotSEMM, which calls for the specification of parameter estimates in vector

form, the online utility takes a step-by-step approach to obtaining the same

information. First, the number of classes for the model should be specified and
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418 PEK, STERBA, KOK, BAUER

updated by clicking on the “Change Class Number” button. Then, for each class

in the model, users are required to input estimates for the probability of class

membership (labeled  ), mean of the latent predictor (labeled ’1), intercept and

slope for the regression of the latent outcome on the latent predictor (labeled ’2

and “21, respectively), the variance of the latent predictor (labeled §11), and the

residual variance of the latent outcome (labeled §22).

Controlling output. By default, class information will be shown. However,

users can choose to suppress class information by unchecking the option “Show

class specific distributions, regression lines, and mixing probabilities.” Once all

the required information is input, clicking the “Submit to Rweb” button will

open another window displaying the two sets of plots. Several examples are

also provided so that users can become familiar with how to input the model

estimates and interpret the generated plots. Clicking on the “Example 1” and

“Example 2” buttons will display the inputs used for the simulated examples;

the former was presented in Bauer (2005). Clicking on the “Example 3” and

“Example 4” buttons will display the inputs for the real data examples to be

described in the next section.

EMPIRICAL EXAMPLES

This section presents several simulated and real data examples of how the utilities

described previously can be used to facilitate and enhance modeling of nonlinear

relationships among latent variables. For all models, estimation was carried out

with Mplus 5 (L. K. Muthén & Muthén, 2007). For reference, both Mplus and

Mx scripts for fitting some of the models are provided in Appendices B and C.

Each SEMM was estimated using 100 random starts to avoid interpreting local

solutions. To keep the presentation compact, we suppress the class information

for the artificial data examples, showing this only for the real data examples.

Artificial Data Examples

Two data sets of 500 cases each were simulated to demonstrate what the results

of the semiparametric modeling approach look like when the latent variable

regression is nonlinear versus linear in form. The measurement model used to

generate the data in each case followed Equation 1 and included three measured

variables for the latent predictor and three measured variables for the latent

outcome. The parameter values were

�1 D �2 D

0

@

0

0

0

1

A ; œ1 D œ2 D

0

@

1

1

1

1

A ; ©1i ; ©2i � N

�

0;
1

3

�

: (7)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
r
t
h
 
C
a
r
o
l
i
n
a
 
G
r
e
e
n
s
b
o
r
o
]
 
A
t
:
 
2
0
:
3
7
 
3
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



NONLINEAR RELATIONS AMONG LATENT VARIABLES 419

The latent variables thus explained 75% of the variance of their respective

measured variables.

For the nonlinear data example, the latent variable regression was quadratic

in form, specifically,

˜2i D �:5 C :5˜1i C :5˜2

1i
C —2i ; (8)

where ˜1i � N.0; 1/ and —2i � N.0; :25/, matching an example in Bauer &

Curran (2004). For the linear data example, the latent variable model was given

by

˜2i D :866˜1i C —2i ; (9)

where ˜1i was generated from a ¦2.3/ distribution standardized to have a mean

of zero and unit variance and —2i � N.0; :25/. In both models, 75% of the

variance in ˜2i is explained by ˜1i .

For each data set, it should be possible to estimate an SEMM with multiple

latent classes. For the nonlinear data, the mixture should function to capture

the nonlinear relationship between the latent variables. Likelihood ratio tests

should then indicate rejection of both Conditions A and B described earlier

(i.e., invariance of the predictor distribution across class and invariance of the

within-class regression lines, respectively). In contrast, for the linear data, the

mixture should function to accommodate the nonnormal distribution of the

latent predictor (see Bauer & Curran, 2004) but should not imply a nonlinear

relationship between the latent variables. For this data set, we expect to reject

Condition A but not Condition B.

For the nonlinear data, a three-class model with across-class equality con-

straints on the variance parameters showed the best fit to the data, as determined

by comparison of model fit indices (e.g., Bayes’s Information Criterion or

BIC). Because the variance parameters were already held constant over classes,

Condition A was evaluated by further constraining the means of ˜1 (i.e., ’1) to

be equal, resulting in �¦2.2/ D 128:22, p < :001. Condition B was evaluated

by removing the previous constraint and instead applying invariance constraints

on the intercepts and slopes for the within-class regression lines (i.e., ’2 and

“21), resulting in �¦2.4/ D 277:982, p < :001. The rejection of both sets of

constraints correctly suggests that the relationship between the latent variables is

not linear. Figure 3 shows the globally nonlinear regression function generated

by the software utilities for this example, superimposed on a contour plot of the

model-implied bivariate distribution for the latent variables. The model-implied

marginal distributions of the latent predictor and outcome are depicted to the

top and right of the main panel, respectively.

For the linear data example, a two-class model with class-varying variance

parameters fit the data best. As expected, likelihood ratio tests indicated rejection
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FIGURE 3 Plots of the marginal mixture densities for ˜1 and ˜2 , the bivariate contour

plot, and the nonlinear regression of ˜2 on ˜1.

of Condition A, �¦2.2/ D 67:072, p < :001, but not Condition B, �¦2.2/ D

1:280, ns. That is, the distribution of the latent predictor differed in location

and scale across components of the mixture, implying nonnormality, but the

intercepts and slopes of the within-class regression lines did not significantly

differ from one another, so that the null hypothesis of linearity could not be

rejected. This pattern of results is clearly seen in Figure 4.

Empirical Application: Affect and Heuristic Processing

The following two examples examine the relationship between affect and cogni-

tive heuristic processing. Prior research has indicated that individuals in a posi-

tive mood are more likely to adopt a heuristic processing strategy characterized
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FIGURE 4 Plots of the marginal mixture densities for ˜1 and ˜2, the bivariate contour

plot, and the linear regression of ˜2 on ˜1.

by relatively little attention to detail and increased reliance on general knowledge

structures (see Schwarz, 2000, for a review). In contrast, individuals who are in a

negative mood are highly likely to adopt a less heuristic processing strategy char-

acterized by systematic cognition and considerable attention to detail (Schwarz

& Clore, 1996). We thus anticipated that positive and negative emotions would

both be monotonically related to heuristic processing (in opposite directions)

but that these relationships might not be strictly linear.

The data were obtained from a convenience sample of 507 adults (41.89%

males) between 19 and 60 years of age. The variables of interest here are positive

and negative emotions, as measured by the modified Differential Emotions Scale

(Fredrickson, Tugade, Waugh, & Larkin, 2003), and cognitive heuristic process-
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ing, as measured by the Marlowe-Crowne Social Desirability Scale (Crowne

& Marlowe, 1960). The latter measure has been shown to reflect cognitive

heuristic processing by Shrauger (1972) as well as Evans and Forbach (1982).

Indicators within each construct were combined by taking a weighted mean score

to form three-item parcels for each latent variable. All parcels were scored in

the direction where higher scores indicate more endorsement of the construct.

Of interest here are the bivariate relationships between positive and negative

emotions and heuristic processing. Two sequences of models were thus esti-

mated, the first predicting heuristic processing as a function of positive emotion

and the second predicting heuristic processing as a function of negative emotion.

In each case, SEMMs with one to five classes were estimated. For contrast, prior

to discussing the results of the SEMMs, we first present the standard SEM for

each model.

The effect of positive emotions on heuristic processing. The linear

effect of positive emotions on heuristic processing obtained from the standard

SEM is in the expected direction, as seen in Figure 5. Yet there is little empirical

basis for making the assumption that this relationship is linear, motivating our

use of the semiparametric modeling approach. Fitting SEMMs to the data, the

BIC, and other considerations suggested that a two-class model with across-

class equality constraints on the variance parameters fit the data best. Likelihood

ratio tests rejected both Condition A (i.e., an identical distribution for positive

emotions in each class), �¦2.1/ D 7:568, p < :01, and Condition B (i.e.,

equal intercepts and slopes for the regression of heuristic processing on positive

emotions in each class), �¦2.2/ D 8:054, p < :05, suggesting that heuristic

processing is nonlinearly related to positive affect. Inputting the parameter

estimates for the two-class model, shown in Table 1, into either the plotSEMM

package or the online utility produces the plots shown in Figures 6 and 7. Note

TABLE 1

Parameter Estimates for the Effects of Affect on Cognitive Heuristic Processing

Parameters   ’1 ’2 “21 §11 §22 BIC

Positive emotions

One class model 1.000 3.047 0.234 0.093 0.621 0.024 1885.679

Class 1 0.602 3.529 0.020 0.152 0.265 0.023 1895.013

Class 2 0.398 2.317 0.336 0.053 0.265 0.023

Negative emotions

One class model 1.000 1.913 0.680 �0.084 0.459 0.026 1690.591

Class 1 0.308 2.670 0.392 0.019 0.492 0.023 1473.685

Class 2 0.692 1.573 1.124 �0.364 0.066 0.021

Note. BIC D Bayes Information Criterion.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
N
o
r
t
h
 
C
a
r
o
l
i
n
a
 
G
r
e
e
n
s
b
o
r
o
]
 
A
t
:
 
2
0
:
3
7
 
3
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9
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FIGURE 5 Plots of the marginal densities for heuristic processing and positive emotions,

the bivariate contour plot, and the linear regression of heuristic processing on positive

emotions.

that, unlike Figures 3 and 4, we elected to include class information in Figures 6

and 7. Let us first consider the information presented in the two figures, followed

by a summary of the substantive implications of the results.

The primary panel of Figure 6 depicts the globally nonlinear regression

function obtained from Equation 5, in bold, superimposed on a contour plot

of the model-implied bivariate distribution of the latent variables. To the top

and right of the panel are the model-implied marginal distributions of the latent

predictor and latent outcome, respectively. The marginal and bivariate distribu-

tions may be of interest in their own right, but they also serve two important

purposes for interpreting the global regression function. First, clear evidence
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FIGURE 6 Plots of the marginal mixture densities for heuristic processing and positive

emotions, the two locally linear regression estimates, the bivariate contour plot, and the

nonlinear regression of heuristic processing on positive emotions.

of multimodality or discontinuities in the latent variable distributions may be

indicative that smoothing over the within-class estimates is inadvisable. No such

evidence is found in Figure 6. Second, the distribution plots indicate densely

and sparsely populated regions of the latent space. The shape of the regression

function should be interpreted with caution within sparse regions, whereas it

may be interpreted more confidently within dense regions. For instance, the

bend in the regression function seen in Figure 6 at positive emotion scores of

about 3 takes place within a region of relatively high density.

Additionally, the within-class regression lines and the within-class marginal

distributions are plotted in Figure 6 via different line types. This within-class
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FIGURE 7 Plots of the marginal densities of positive emotions and the class probabilities

across the range of positive emotions.

information is useful for interpreting the smoothing that takes place in computing

the global regression function, particularly when viewed in conjunction with the

plot of conditional mixing probabilities provided in Figure 7 (with similar line

types). The within-class estimates shown in Figure 6 correspond to Equation 4

and indicate that the locally linear relationship between positive emotions and

heuristic processing is weaker in Class 2 than Class 1. Class 2 is also character-

ized by a lower mean level of positive emotions, as can be seen in the marginal
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distribution of positive emotions plotted at the tops of Figures 6 and 7 (see

also Table 1). The within-class marginal distributions for the latent predictor

(dashed lines) contribute to the numerator of Equation 6 used to compute the

conditional mixing probabilities. Hence, as shown in Figure 7, as we move

across the range of positive emotions, from low to high, the weight (conditional

probability) assigned to the Class 2 regression line in computing the global

regression function diminishes and the weight assigned to the Class 1 regression

line increases. Thus the global regression function computed by Equation 5 and

shown in Figure 6 smoothly shifts from the Class 2 line to the Class 1 line.

More substantively, Figure 6 clearly shows that the relationship between

positive emotions and heuristic processing is positive and monotonic but not

strictly linear; beyond a score of about 3, the effect of positive emotions on

heuristic processing becomes more acute. This pattern indicates that use of

heuristic processing strategies increases more sharply under the influence of

a strongly positive mood. At the extreme, this may contribute to the inability

to attend to details and impaired judgment shown by individuals with bipolar

disorder during a manic state (American Psychiatric Association, 1994).

The effect of negative emotions on heuristic processing. The results of

fitting a standard linear SEM to the negative emotions and heuristic processing

data are shown in Table 1 and Figure 8. Again, there is little basis for making

the assumption that the relationship between the latent variables is strictly linear.

Fitting SEMMs to the data, we once again found that two classes were optimal

for the data. In this case, however, the best model fit was obtained by allowing

the variance of the negative emotions factor to differ over classes. In support

of nonlinearity, Conditions A and B were both rejected, �¦2.2/ D 244:486,

p < :0001 and �¦2.2/ D 52:152, p < :0001. Paralleling Figures 6 and 7 for

positive emotions, Figures 9 and 10 depict the regression of cognitive heuristic

processing on negative emotions. We again consider the information presented

in each plot, followed by its substantive interpretation.

The model-implied bivariate contour plot for the two latent variables is

depicted in the primary panel of Figure 9, with the bold line tracing out the

global regression function derived by Equation 5. The contour plot does not

provide any contraindications for interpreting the global regression function

(e.g., discontinuities, strong multimodality). It does, however, indicate that the

vast majority of participants reported a low level of negative emotions and that

some care should be taken in interpreting the regression function within the

sparse lower right quadrant. This characteristic of the data is similarly seen

in the marginal distribution for negative emotions, which shows considerable

positive skew. In contrast, the distribution for heuristic processing is much more

normal in shape (consistent with Figure 6).
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FIGURE 8 Plots of the marginal densities for heuristic processing and negative emotions,

the bivariate contour plot, and the linear regression of heuristic processing on negative

emotions.

Examining the within-class estimates, we can see that the positive skew for

negative emotions is accommodated through the mixture of distributions for

Class 1, with a higher mean and large variance, and Class 2, with a lower

mean and small variance. In turn, this implies that the within-class regression

line for Class 1 will be given greater weight (as determined by Equation 6)

when negative emotions are high and less weight for lower levels of negative

emotions (for which Class 2 will be given greater weight). This pattern is

clearly evident in Figure 10 when examining negative emotion scores above

1. Note that given the wide variance of Class 1, the mixing probability for

this class is also higher than Class 2 when negative emotions are very low
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FIGURE 9 Plots of the marginal mixture densities for heuristic processing and negative

emotions, the two locally linear regression estimates, the bivariate contour plot, and the

nonlinear regression of heuristic processing on negative emotions.

(at the left side of Figure 10). Viewing these probabilities in relation to the

marginal distribution depicted at the top of Figure 9, however, clarifies that this

reversal essentially takes place outside of the range of the data. Thus, the global

regression function in Figure 9 closely resembles the within-class regression line

for Class 2 for negative emotion scores from 1 to 2, then smoothly shifts to the

within-class regression line for Class 1 when negative emotion scores exceed

about 2.
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FIGURE 10 Plots of the marginal densities of negative emotions and the class probabilities

across the range of negative emotions.

Overall, these results show that the regression of heuristic processing on

negative emotions is also not linear. With increasing levels of negative emo-

tions, the tendency to rely on heuristics in decision making decreases sharply,

then essentially asymptotes when negative emotions exceed about two. This

pattern shows that the influence of negative emotions on heuristic processing is

somewhat distinct from the absence of positive emotion and further suggests a

limit to “depressive realism” in that individuals appear to retain some heuris-

tic processing even under the influence of strong negative emotion (Alloy &

Abramson, 1979). Although suggestive, we must be mindful that these results are

most stable for low levels of negative emotions, given the skew of the negative

emotions distribution. To make stronger conclusions, it would be necessary to
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recruit a sample including a larger proportion of individuals with high levels of

negative emotions.

DISCUSSION

The assumption that latent variables are linearly related is often made for

convenience, not on the basis of theory or data. Here we have shown that

this assumption can be easily evaluated empirically by using a technique that

is analogous to the LOWESS regression procedure routinely used to evalu-

ate observed-variable relationships. Although the methods illustrated here were

proposed previously by Bauer (2005), they have not been widely implemented.

We have sought to remove several impediments to the use of this approach

by providing a more accessible description of the approach, numerous example

analyses, a standardized display format for the results, and software utilities

that automate the post-processing of SEMM results to generate the displays.

Although we focused on models including just one latent outcome, these utilities

may also be applied without modification to visualize relationships between

a latent predictor and multiple latent outcomes. For example, if the effect of

negative affect on both cognitive processing and memory was examined, a single

SEMM would be fit with emotion predicting the two outcomes. Two separate sets

of graphs are then generated—those for negative affect on heuristic processing

and those for negative affect on memory. Regardless of the number of outcomes,

the relationship of the predictor to each outcome is examined in turn.

A limitation of our article is that we did not address the modeling of nonlin-

ear interactions between two or more latent predictors via the semiparametric

approach. There are two primary reasons for this omission. First, although

Bauer (2005) noted that applying this procedure for SEMMs with multiple

latent predictors could accommodate potentially nonlinear interaction effects, no

empirical research has yet been carried out to evaluate the performance of this

approach. Second, optimally depicting multidimensional relationships among

latent variables will require different types of graphs than those that suffice for

the bivariate case. For example, in order to portray interactions between two

latent variables, one might use wire frame plots to depict the three-dimensional

regression surface, and such plots would require wholly new graphing utilities. A

second limitation of the graphing utilities is that they do not provide confidence

intervals for the nonlinear latent regression estimate, although we are currently

developing methods to do so. These tasks thus provide an important challenge to

future research on the SEMM approach for modeling nonlinear effects. Despite

these limitations, however, we hope that this article will facilitate the use of

SEMMs to semiparametrically model bivariate latent variable relationships of

unknown functional form under minimal distributional assumptions. The glob-
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ally nonlinear regression estimates obtained by this approach will often be of

interest in their own right and may also be useful for motivating the use of more

standard polynomial regression models for latent variables.
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APPENDIX A

R Code for Positive Emotions and Heuristic
Processing Example

#user specified matrices

pi <- c(0.602, 0.398)

alpha1 <- c(3.529, 2.317)

alpha2 <- c(0.02, 0.336)

beta21 <- c(0.152, 0.053)

psi11 <- c(0.265, 0.265)

psi22 <- c(0.023, 0.023)

#calling the setup function to generate data to be used in plots

plotSEMM_setup(pi, alpha1, alpha2, beta21, psi11, psi22)

#functions for the two plots and the legend

plotSEMM_contour(Eta1, Eta2)

plotSEMM_probability(Eta2)

plotSEMM_legend()

APPENDIX B

Mplus Code for Positive Emotions and Heuristic

Processing Example

title:

Positive emotions -> Heuristic processing

data:

file is hp.dat;

variable:

names are sid pe1 pe2 pe3 ne1 ne2 ne3 hp1 hp2 hp3;

usevariables pe1-pe3 hp1-hp3;

classes = class(2);

analysis:

type = mixture;

estimator = mlr; !Robust maximum likelihood estimation

starts = 500 10; !Estimate 10 best of 500 random starts

CLASSES = Class(2); !Number of classes specified as 2

model:

%overall% !Parameters declared here are held constant across classes

PE by pe1@1 pe2* pe3*; !Measurement model for PE

[pe1@0]; !Fixing intercept of first PE variable at 0

PE; !Covariance of PE

HP by hp1@1 hp2* hp3*; !Measurement model for HP
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[hp1@0]; !Fixing intercept of first HP variable at 0

HP; !Covariance of HP

%class#1%

[PE*]; !Mean of PE for class 1

[HP*]; !Mean of HP for class 1

HP on PE; !Slope for latent variable in class 1

%class#2%

[PE*]; !Mean of PE for class 2

[HP*]; !Mean of HP for class 2

HP on PE; !Slope for latent variable in class 2

APPENDIX C

Mx Code for Negative Emotions and Heuristic

Processing Example

TITLE Negative Emotions -> Heuristic Processing;

DATA NG=2 NI=10 NO=507 NModel=2

REC FILE=HP.dat

LABELS sid pe1 pe2 pe3 ne1 ne2 ne3 hp1 hp2 hp3

SELECT ne1 ne2 ne3 hp1 hp2 hp3;

BEGIN MATRICES;

C DIAG 2 2 Free !Covariance matrix of latent variables Class1

D DIAG 2 2 Free !Covariance matrix of latent variables Class2

E DIAG 6 6 Free !Covariance matrix of measured variables

L FULL 6 2 Free !Factor loading matrix

S FULL 2 2 Free !Slopes for latent variables class 1

T FULL 2 2 Free !Slopes for latent variables class 2

A FULL 2 1 Free !Intercepts for latent variables class 1

B FULL 2 1 Free !Intercepts for latent variables class 2

N FULL 6 1 Free !Intercepts for measured variables

P FULL 2 1 Free !Mixing probabilities

I IDEN 2 2 Fixed !Identity matrix

END MATRICES;

EQUATE C 2 2 D 2 2 !Constraining variance of HP equal across classes

BEGIN ALGEBRA;

F = L*(I-S)~*C*((I-S)~)‘*L’ + E; !Covariance structure for class 1

G = L*(I-T)~*D*((I-T)~)‘*L’ + E; !Covariance structure for class 2

X = N + L*(I-S)~*A; !Mean structure for class 1
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Y = N + L*(I-T)~*B; !Mean structure for class 2

END ALGEBRA;

Means X0 _Y0 ;

Covariance F_G;

Weight P;

!Matrix patterns

PATTERN L !Specifying matrix elements to be estimated

0 0

1 0

1 0

0 0

0 1

0 1

PATTERN S

0 0

1 0

PATTERN T

0 0

1 0

PATTERN N 0 1 1 0 1 1

!Identification Constraints

VALUE 1 L 1 1 L 4 2 !Fix loadings as 1.0 for first loading on each factor

VALUE 0 N 1 1 N 4 1 !Fix intercepts as 0 for first measured variable.

!START VALUES

MATRIX E .3 .3 .3 .3 .3 .3

MATRIX D .3 .02

MATRIX L

1 0

1 0

1 0

0 1

0 1

0 1

MATRIX N 0 0 0 0 0 0

MATRIX S

0 0

.4 0

MATRIX T

0 0

1.1 0

MATRIX A 3.5 0

MATRIX B 2.5 .5

MATRIX P .3 .7

BO .05 .95 P 1 1 to P 2 1

END
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TITLE mixing proportions sum to unity

CONSTRAINT_GROUP

BEGIN MATRICES;

P FULL 2 1 = P(1)

I UNIT 1 2

J UNIT 1 1

END MATRICES

CON (I*P)-J;

END
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