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Traditional survival analysis was developed to investigate the occurrence and timing of a single event,
but researchers have recently begun to ask questions about the order and timing of multiple events. A
multiple event process survival mixture model is developed here to analyze nonrepeatable events
measured in discrete-time that may occur at the same point in time. Building on both traditional
univariate survival analysis and univariate survival mixture analysis, the model approximates the
underlying multivariate distribution of hazard functions via a discrete-point finite mixture in which the
mixing components represent prototypical patterns of event occurrence. The model is applied in an
empirical analysis concerning transitions to adulthood, where the events under study include parenthood,
marriage, beginning full-time work, and obtaining a college degree. Promising opportunities, as well as
possible limitations of the model and future directions for research, are discussed.
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Survival analysis is a useful tool for understanding both the
occurrence and the timing of events. While survival analysis was
originally developed to investigate the human lifetime, it is equally
applicable to questions regarding the occurrence of any type of
event, and there are numerous applications in the social and
behavioral sciences. For example, clinical psychologists investi-
gating the occurrence of affective illnesses or therapy termination
benefit from the survival analysis framework (e.g., Corning &
Malofeeva, 2004), as do developmental researchers who investi-
gate the transition from one developmental stage to another (e.g.,
Ha, Kimpo, & Sackett, 1997) and researchers following students’
entrance and exit from school (e.g., Bowers, 2010).

Event history data are rather unique in that the data can be used
to determine both if and when an event occurs, yet there are often
individuals who do not experience the event within the time frame

of the study. Traditional linear and logistic regression techniques
are not suited for this kind of missing data problem, termed
censoring. For censored individuals, it is unknown when they will
experience the event, or in some cases whether they will experi-
ence the event at all. Survival analysis techniques were formulated
to analyze this type of data (Lee & Wang, 2003; Singer & Willet,
2003). The basic statistical concepts of survival analysis depend on
whether the time variable measuring the state of the event is
continuous or discrete. Continuous-time survival methods assume
event times can be measured exactly—thus there should be no
“ties” in the dataset where two or more people have the same event
time. While it may be logical to think of time as a continuous
variable, this assumption is often unrealistic in practice. This is
especially true for data collected in the social and behavioral
sciences, as researchers frequently ask for the year or age of an
event rather than the exact date. Also, events can sometimes only
occur at discrete points in time (e.g., number of therapy sessions
before dropout). In addition, discrete-time methods can be used to
approximate the results of a continuous-time survival analysis
(Vermunt, 1997) and are conceptually and computationally sim-
pler. As such, the remainder of the article focuses on models where
time is measured on a discrete scale.

Moving beyond traditional survival analysis, researchers have
recently begun to ask questions about the order and timing of
multiple events. Multivariate survival models, such as recurrent
event models, parallel data models, and competing risks models,
relax the standard requirement that all time variables are univariate
and independent (see Hougaard, 2000). For example, Gabadinho,
Ritschard, Müller, and Struder (2011) discuss a technique called
trajectory mining and provide an R package for analyzing se-
quences of events such as career or family trajectories. While there
has been great progress on the analysis of multivariate event
history data using these kinds of models, there is a demonstrated
need for new analytic methods in investigating the order and
timing of different nonrepeatable events that may occur at the

This article was published Online First September 30, 2013.
Danielle O. Dean and Daniel J. Bauer, Department of Psychology,

University of North Carolina at Chapel Hill; Michael J. Shanahan, Depart-
ment of Sociology, University of North Carolina at Chapel Hill.

This research uses data from Add Health, a program project directed by
Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bear-
man, and Kathleen Mullan Harris at the University of North Carolina at
Chapel Hill, and funded by Grant P01-HD31921 from the Eunice Kennedy
Shriver National Institute of Child Health and Human Development, with
cooperative funding from 23 other federal agencies and foundations. Spe-
cial acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for
assistance in the original design. Information on how to obtain the Add
Health data files is available on the Add Health website (http://www
.cpc.unc.edu/addhealth). No direct support was received from Grant P01-
HD31921 for this analysis. This article was supported by National Institute
of Child Health and Human Development Grant R01 HD061622-01 to
Michael J. Shanahan.

Correspondence concerning this article should be addressed to Dan-
ielle O. Dean, CB#3270, Davie Hall, Chapel Hill, NC 27599. E-mail:
danielledean@unc.edu

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Psychological Methods © 2013 American Psychological Association
2014, Vol. 19, No. 2, 251–264 1082-989X/14/$12.00 DOI: 10.1037/a0034281

251

http://www.cpc.unc.edu/addhealth
http://www.cpc.unc.edu/addhealth
mailto:danielledean@unc.edu
http://dx.doi.org/10.1037/a0034281


same point in time and do not necessarily occur in a sequential
manner. Many researchers investigating several such events have
resorted to completing a separate survival analysis for each event
and have not directly examined the interdependence of the events.
For example, Schwartz et al. (2010) investigated how positive
youth development influenced tobacco, alcohol, illicit drug, and
sex initiation by conducting four separate survival analyses. Sim-
ilarly, Scott et al. (2010) examined the influence of gender and
marital status on the first onset of mood, anxiety, and substance
use disorders by conducting several survival analyses. While an-
alyzing each event separately can be useful, it gives no insight on
how the events are related to each other.

Vermunt (1997) provided a general log-linear framework for
modeling event history data with mixture models and builds off the
work of Mare (1994), who presented a bivariate survival mixture
model for analyzing event times of clustered observations, for
example siblings or couples. Vermunt also suggested that multiple
processes measured in discrete-time may be modeled by specify-
ing one of the events as the dependent variable and treating others
as time-varying covariates. However, researchers must rotate the
dependent variable and run multiple models in order to investigate
the reciprocal relationships. Malone, Lamis, Masyn, and Northrup
(2010) used a different approach for discrete-time data called
dual-process discrete-time survival analysis, which expands on
associative latent transition analysis (Bray, Lanza, & Collins,
2010). This approach models two time-to-event processes concur-
rently by linking the processes to each other, similar to a cross-
lagged panel design. They used the model to test the gateway drug
hypothesis by using a highly constrained latent transition matrix to
model and test the cross-links between time to illicit drug use and
time to licit drug use.

In addressing the need for a model that can be expanded for
more than two events and that is developed specifically for the
situation where the events may occur at the same point in time for
an individual, we have two main objectives. The first objective of
this article is to introduce a discrete-time Multiple Event Process
Survival Mixture (MEPSUM) model, a latent variable approach to
analyzing the interdependencies between multiple nonrepeatable
events that are measured in discrete-time. The approach is math-
ematically a generalization of single-event discrete-time survival
mixture analysis (B. Muthén & Masyn, 2005) but is conceptually
different in some ways and has several advantages in addition to
incorporating multiple events. The second objective of the article
is to demonstrate the usefulness of the model through an empirical
analysis, which was the motivation behind this work. The analysis
concerns the timing and occurrence of four different markers of
adulthood: parenthood, marriage, full-time work, and obtaining a
college degree from individuals in the National Longitudinal Study
of Adolescent Health (Add Health).

The remainder of the introduction is organized into four sec-
tions. In the first section, the motivating example mentioned above
is introduced. The second section outlines the basic concepts of
traditional univariate discrete-time survival analysis, in order to
introduce the discrete-time multiple event process survival mixture
model in the third section. The fourth section regards model
description and evaluation tools, and these are illustrated in the
empirical analysis concerning transitions to adulthood that follows.

Motivating Example

Researchers have long established that the events experienced
by individuals over their lifetimes are interdependent. For exam-
ple, individuals may make decisions on whether they would like to
continue their education based on their family status, such as
whether they are married and have children (Marini, 1984). More
broadly, life course research is guided by the notion that an
individual’s development involves the order and timing of multiple
social roles over time where the meaning of a given social role is
dependent upon the presence or absence of other roles (Elder,
1985). Yet instead of investigating the multidimensional nature of
the life course, researchers typically focus on one aspect of the life
course, such as timing of an individual’s first child; then they
examine this event in isolation from other life course events using
traditional methods such as linear and logit regression and univar-
iate event history models. However, as the significance of a role
depends on the role configuration, dissecting the life course in such
a way limits our understanding of the life course as a dynamic
phenomenon (Macmillan & Eliason, 2003).

In aiming to understand the dynamic, multidimensional nature
of the life course, the MEPSUM model is applied to the timing of
four different transitions into adulthood. The purpose of this anal-
ysis is both to demonstrate the model’s applicability to life course
theory and to build on prior research by examining the latent
classes that reveal pathways to adulthood, or patterns of the events
over time (Shanahan, 2000; Shanahan, Miech, & Elder, 1998). The
life course pathways found from this model are prototypical and
are not expected to be the only pathways through the life course, but
they provide a glimpse at the underlying multivariate distribution of
pathways, of which there are likely thousands of possibilities. Addi-
tionally, this example is useful in examining the ability of the model
to detect differences in pathways taken by different social groups. By
examining the multidimensional nature of the life course, the model
gives insight into the possible mechanisms leading to differences in
life course pathways. It is possible that a covariate influences the
multivariate distribution of the risk of multiple events in a way that
does not lend itself to be discovered by traditional methods that
analyze events one at a time. For example, a covariate might increase
the risk of transitioning into family roles for those who do not pursue
college education but decrease the risk of transitioning into family
roles for those pursuing a college education. Thus, the added com-
plexity of the MEPSUM model has potential to increase our under-
standing of multiple transitions over time.

Discrete-Time Survival Analysis

Before introducing the MEPSUM model in more detail, it is
useful to outline the basic concepts of univariate survival anal-
ysis. Let T denote the event time, and j the discrete time point,
with j � 1, 2, . . . , J. There are many methods of characterizing
the probability distribution of the event time. The simplest way
is to define the probability of experiencing an event at a specific
time period:

f j � P(T � j). (1)

Another option is the survival function, which is defined as the
probability that an individual survives longer than j and is
denoted Sj:
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Sj � P(T � j) � 1 � �
m�1

j

fm, (2)

with Sj � 1 at j � 0. The survival function is often used to find
descriptive measures of the event history, such as the median
lifetime: an estimate of the time period when the event has oc-
curred for 50% of the population. Such descriptive measures are
important when there is censoring, as measures such as the sample
mean will not be useful in describing the center of the distribution
when the event time is not known for all individuals.

An equally useful function known as the lifetime distribution
function defines the probability that an individual has experienced
the event by time j:

Dj � P(T � j) � 1 � Sj � �
m�1

j

fm. (3)

Importantly, the number of individuals who experienced the event
at T � j is unknown if there are censored individuals. Thus, neither
the survival function nor lifetime distribution function can be
directly estimated, as fj is unknown.

The hazard probability h is the first function that can be esti-
mated with both censored and uncensored individuals. It is the
conditional probability that the event occurs at j given that it did
not occur prior to j:

hj � P(T � j�T � j) � P(T � j�T � j � 1) �
P(T � j)

P(T � j � 1)
. (4)

The hazard for time j is estimated as the number of events that
occur at j over the number of individuals in the risk set. It thus tells
us the unique risk of event occurrence for each time period among
those eligible to experience the event, which is exactly what we
want to know: whether and when events occur. It is estimable with
censored individuals as it is a conditional probability computed
only using individuals eligible to experience the event and can be
computed for every time period when event occurrence is re-
corded. Under an assumption of noninformative censoring, we can
assume the estimated hazard function applies to the entire popu-
lation, as all noncensored individuals at each time period are
representative of all individuals who would have remained in the
study if censoring had not occurred.

It is important to note that the hazard function can be rewritten
in terms of fj and Sj:

hj �
f j

Sj�1
� 1 �

Sj

Sj�1
. (5)

This relationship is useful in obtaining an estimate of the survival
function when there are censored individuals, as Equation 4 can be
rearranged to show:

Sj � [Sj�1][1 � hj]. (6)

Given this relationship and the fact the survival function is equal
to one at j � 0 (no individual experienced an event before the
beginning of the time variable) this leads to the idea that the
survival probability at time period j is the product of the hazard
probabilities for each of the earlier time points:

Sj � �
m�1

j

(1 � hm). (7)

The lifetime distribution function can similarly be estimated indi-
rectly from the hazard probabilities, or by the simple relationship
between Dj and Sj given in Equation 3.

The next step of a survival analysis is to model the probability
distribution and add covariates to the model to examine their influ-
ence. In line with Singer and Willett (1993), a logit link function will
be used for the remainder of the article, but other link functions such
as the complementary log-log link are equally applicable to all of the
survival methods discussed hereafter. The unstructured hazard func-
tion at time j without covariates is then given by

logit(hj) � ln� hj

1 � hj
�� �j, (8)

where �j is the intercept parameter for time j. This model repre-
sents the log-odds of event occurrence as a function of the time
period only.

There are almost countless ways to expand on the simple un-
structured discrete-time hazard model discussed here (e.g., Singer
& Willet, 2003; Allison, 1999). For example, instead of allowing
an intercept for each time period, which places no constraints on
the shape of the hazard, it is possible to have a polynomial
representation of time. When the number of time periods is large
or some time periods have very small risk sets, it can be advan-
tageous to fit a more parsimonious model. For simplicity purposes,
the remainder of the article will focus on the unstructured hazard
with a logit link function, but the equations that follow can be
easily generalized to alternative functions as mentioned above.
Finally, it is also possible for both time invariant as well as time
varying predictors to be added to the model. Traditional univariate
survival analysis thus provides an important conceptual and ana-
lytic framework from which to evaluate if and when one nonre-
peatable event occurs.

Model for Multiple Events

A discrete-time Multiple Event Process Survival Mixture (MEP-
SUM) model is now developed to examine multiple nonrepeatable
events. A finite mixture is used to approximate the multivariate
hazard distribution of the events (consistent with Heckman &
Singer, 1984; Nagin, 1999; and Nagin & Land, 1993). The com-
ponents of the mixture, or latent classes, represent local regions
within the multivariate distribution, providing a succinct summary
of individual differences in patterns of event occurrence over time.
In other words, the model provides a nonparametric way to capture
associations between events through the identification of latent
classes of individuals with similar risk, or hazard, for multiple
events over time. Although it may be tempting to interpret these
classes literally (i.e., as qualitatively distinct population sub-
groups), we regard it as more likely that the underlying multivariate
hazard distribution is in fact continuous in nature. Thus, the classes
merely provide a statistically expedient way to represent this distri-
bution in a simple, mathematically tractable form that captures evi-
dence in the data of how the events are related to each other. The
model is easily expanded beyond two events and enables researchers
who aim to analyze multiple events to utilize all individuals in their
dataset, including those with censored event times.
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Substantively, the model allows researchers to understand both
the order and timing of the events through examination of the
hazard functions both within each latent class and across latent
classes. Additionally, both the survival function and lifetime dis-
tribution function for each event can be compared across latent
classes, as these functions may be estimated indirectly from the
fitted hazard functions through Equation 3 and Equation 7. Pre-
dictors can be incorporated into the model to investigate potential
influences on the risk for multiple events over time.

Suppose the event history variable yipj for person i represents
whether a process of type p (p � 1, 2, . . . , P) occurs at time
period j (j � 1, 2, . . . , Jip) and the response vector yi holds the
event history variable across all time periods and processes
��yi11,...,yi1Ji1

�,�yi21,...,yi2Ji2
�,...,�yiP1,...,yiPJiP

�	�. The total number

of time points under study for event process p is represented by

Jp. Note the flexibility of the model in that the number of time

periods studied can vary between processes, the width of the

time periods can vary within processes, and the length of the

vector can vary between individuals.
Let yipj � 0 if the nonrepeatable event for process p did not

occur for individual i at that time period or earlier and yipj � 1 if
the event occurred at that time period. By framing the data in this
way, individuals only contribute data at j for process p when they
are in the risk set at j for process p (i.e., when the event has not yet
occurred), similar to a standard univariate survival analysis. For
example, consider two event processes (e.g., onset of depression
and onset of an anxiety disorder), which are both measured annu-
ally from 10 years old to 14 years old. An individual who responds
at age 15 with no history of either disorder would have the event
history (0 0 0 0 0) for each process. In contrast, consider an
individual who is measured at age 13 who was diagnosed with an
anxiety disorder at age 11. The event history for depression would
only include data from ages 10 to 13 (0 0 0 0), and the event
history for anxiety would only include data from ages 10 to 11
(0 1). Individuals with an unknown event time are said to be
censored, and the model assumes that these data are missing at
random. This assumption of noninformative censoring is impor-
tant, for we can then assume all noncensored individuals at each
time period are representative of all individuals who would have
remained in the study if censoring had not occurred. This allows
generalization to the entire data set and thus the original popula-
tion.

The risk of event occurrence (yipj � 1), or the conditional
probability of event occurrence given it did not occur before, for
event process p in time period j within latent class k is represented
by hpjk. Within latent class k, hpjk is modeled using a simple
unstructured discrete-time hazard function with time-specific in-
tercept �pjk:

logit(hpjk) � �pjk. (9)

A more complex version of the model could include both effects of
time-invariant and time-varying covariates directly in the hazard
function above, which would create direct effects of the covariates
on the hazard functions. Note that adding such direct effects
substantially increases the complexity of the model and can create
difficulties for interpretation. If necessary, direct effects should
initially be entered as class-invariant, as any parameter that varies

over latent classes provides information to identify and discrimi-
nate the latent classes (Petras & Masyn, 2010).

It is also possible to structure the hazard function, such as
imposing a quadratic form. However, caution is needed before
imposing such a structure. Basing this structure on the shape of the
total-sample estimated hazard function may be incorrect, as it is
possible that this shape will not hold within or across latent classes,
as will be seen in the empirical example that follows. Additionally,
it is possible that different events have different parametric forms.
Results from the MEPSUM model with unstructured hazard func-
tions can serve as a guide to possible parametric forms of the
hazard functions.

The model assumes that all marginal associations among the
hazard functions are captured though between-class differences, so
that the observed hazard indicators are independent within latent
class. This implies the probability of a specific response vector
within a given latent class k can be obtained by simply multiplying
the probability of all of the responses:

P(yi�Ci � k) � �
p�1

P

�
j�1

Jip

�hpijk
yipj(1 � hpijk)

(1�yipj)�. (10)

The indicator variable yipj functions as a device for selecting the
appropriate probability by which to multiply. When the event
occurs (yipj � 1) for process p at time period j, the model multi-
plies by hpijk, versus event nonoccurrence for process p at time
period j when the model multiplies by (1 � hpijk).

The overall probability of response pattern yi is a weighted
average across all of the latent classes of the probability of being
in latent class k given by �ik and probability of yi given latent class
k as defined in Equation (10):

P(yi) � �
k�1

K

	ikP(yi�Ci � k), (11)

where �ik is modeled using standard multinomial logistic regres-
sion. With time-invariant predictors Xi, this is given by

	ik �
exp(
0K � ��

kXi)

�
w�1

K

exp(
0w � ��
wXi)

, (12)

where the last class is a reference class with �0K � 0 and �=K � 0,
and �k�1

K 	ik � 1. This leaves us with the final equation for the
probability of an event history response vector:

P(yi) � �
k�1

K �	ik �
p�1

P

�
j�1

Jip

�hpijk
yipj(1 � hpijk)

(1�yipj)��, (13)

and the likelihood function:

L � �
i�1

n 
�
k�1

K �	ik �
p�1

P

�
j�1

Jip

�hpijk
yipj(1 � hpijk)

(1�yipj)���, (14)

which is used to find optimal parameter estimates. In large sample
surveys, individuals are often drawn with unequal selection prob-
abilities and the contribution of individual i may be weighted by a
sample weight, which is often computed as the inverse probability
of selection into the sample or through a function that also takes
other features of the survey into account (Kish, 1965; Lohr, 2009).

The model may be fit using latent variable modeling software
such as Mplus (L. K. Muthén & Muthén, 1998–2010) or Latent
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Gold (Vermunt & Magidson, 2005), which obtain maximum-
likelihood model parameter estimates using an Expectation-
Maximization (EM) algorithm. Researchers should be aware of an
issue that commonly arises with modeling the probability of a
binary outcome with a logit link: the logit is undefined if the
probability is exactly zero or one. This could occur in time periods
where there is no risk of event occurrence. To address this issue,
Mplus implements default bounds on the logits of �15, while
Latent Gold utilizes a Bayesian approach, including a Dirichlet
prior for the latent and conditional response probabilities that
serves to smooth parameter values away from the boundary solu-
tion.1 No matter what software program is selected, researchers
should remain cognizant of the methods employed by the program
to address this issue. It should also be noted that mixture models
in general are susceptible to converge at local rather than global
maxima. Multiple starting values should be used, and the conver-
gence pattern should be monitored (McLachlan & Peel, 2000;
Hipp & Bauer, 2006). Example data and code for fitting the model
are given at www.unc.edu/~dbauer.

Importantly, the single event version of this model with unstruc-
tured hazard functions, presented by B. Muthén and Masyn (2005),
is not identified without covariates, as there is not enough infor-
mation in one event process for the model to differentiate latent
classes. An unfortunate side effect is that the classes revealed from
a single event mixture model are then necessarily dependent upon
the covariates entered into the model and different sets of covari-
ates may result in nontrivial differences in the formation of the
latent classes. In contrast, a major benefit of the MEPSUM model
for multiple events is that it can have positive degrees of freedom
for multiple classes, even with unstructured hazard functions and
in the absence of covariates. This is due to the fact that with
multiple event processes, the observed variables are independent
within event process but are not independent across processes,
which can result in positive degrees of freedom. The latent variable
is thus able to capture interdependencies between the hazard
functions of the different process through the addition of latent
classes. Identification of the model without covariates thus allows
investigation of the stability of the latent classes, through compar-
ison of model results with and without covariates.

However, as in all models, empirical underidentification may
still be a concern. When there is little dependence between event
history indicators across processes, the resulting information ma-
trix can be so empirically near nonpositive definite that the soft-
ware fails to reach a solution or results in boundary estimates.2

Researchers should carefully monitor the estimation process and
parameter values that are output, and start values may assist in the
convergence process. In our limited experience applying the model
to date, we have generally found the model is identified with at
least three event processes, even with unstructured hazard func-
tions and without covariates. One may draw insight from related
literature on latent class analysis and growth mixture modeling to
formulate an appropriate model building strategy (e.g., Bandeen-
Roche, Miglioretti, Zeger, & Rathouz, 1997; Collins & Lanza,
2010; Petras & Masyn, 2010; Vermunt & Magidson, 2002).

Class Enumeration and Model Evaluation

Models with different number of latent classes may be evaluated
and compared using information criteria such as Akaike informa-

tion criterion (AIC), Bayesian information criterion (BIC), and
sample-size adjusted BIC (SABIC) as well as classification indices
measuring the degree of uncertainty of classification or separation
of the clusters (Akaike, 1974; Bozdogan, 1987; Fraley, & Raftery,
1998; Schwarz, 1978; Vermunt & Magidson, 2002). The Lo-
Mendell-Rubin likelihood ratio test and parametric bootstrap like-
lihood ratio test are other common approaches to selecting the
number of classes and evaluating model fit (Lo, Mendell, & Rubin,
2001; McLachlan, & Peel, 2000; Nylund, Asparouhov, & Muthén,
2007). Researchers may also examine the results to determine
whether a class is redundant or whether the probability of belong-
ing to a class is very small, as parameter estimates in a low
probability class may not be stable due to the small number of
individuals contributing data to that class.

In evaluating model fit, a researcher cannot compare the esti-
mated latent classes to observed subpopulations, since the classes
are unobserved and inferred from the data. However, one model
evaluation and selection tool is the ability to compare the sample
observed functions with the marginal model implied functions
weighting over latent classes. The aggregate model implied life-
time distribution function for process p is found by weighting the
marginal within-class function by the probability of class mem-
bership �̂k:

D̂pj � �
k�1

K

	̂kD̂pjk. (15)

The standard residual lifetime distribution (SRD) can be then be
computed across all event processes in order to evaluate the
difference between the marginal population-level model implied
functions and the sample observed functions. A smaller SRD
implies closer fit between the sample observed lifetime distribu-
tion function and the model implied population-level function.
With P event process, each with JP events, this is given by

SRD ���p�1
P �j�1

Jp �Dpj � D̂pj�2

�p�1
P Jp

, (16)

where Dpj is the sample observed lifetime distribution function for
process p.

Computing the model implied hazard functions weighting over
latent classes is less straightforward, as the number of people
eligible to experience the event in each class will decrease un-
evenly due to differential risk of event occurrence. Therefore, the
population average hazard functions must be computed by weight-
ing the marginal within-class hazard functions not only by the
probability of event occurrence but also by the number eligible to
experience the event at time j within a latent class k. The number
eligible to experience the event is equal to the survival probability
at time j � 1, and the model implied hazard function weighting
over latent classes is then given by

1 By implementing such a prior, the estimation method is not truly
maximum-likelihood estimation but, instead, posterior mode estimation,
which can be seen as a penalized form of maximum-likelihood.

2 See Abar and Loken (2012) for discussion of identification issues in
latent class models.
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ĥpj �
�
k�1

K

	̂kŜp,j�1,kĥpjk

�
k�1

K

	̂kŜp,j�1,k

. (17)

The standard residual hazard across all event processes is given by

SRH ���p�1
P �j�1

Jp �hpj � ĥpj�2

�p�1
P Jp

, (18)

where hpj is equal to the sample observed hazard function for
process p. Again, this function is useful in determining the differ-
ence between the marginal population-level model implied func-
tions and the sample observed functions. Ideally, SRH would be
very close to 0, which is likely when the form of the hazard
functions is left unstructured.

The model implied functions defined above may also be used in a
descriptive manner to evaluate the overall effects of covariates, by
first computing the predicted probabilities of class membership based
on different levels of covariates, and then using those predicted
probabilities to weight the within-class functions. These steps contrast
with the functions given above in that the predicted probabilities are
now computed conditional on the level of the covariates, e.g., D̂pjk�X.
With an appropriate sample size and categorical covariates, one can
also stratify the sample in order to compute sample observed func-
tions for specific levels of the covariates and can then calculate
standard residual lifetime distribution and standard residual hazard
based on these functions. Resulting model implied functions allow
one to evaluate overall differences in the risk for multiple events over
time for different levels of a covariate, as will be illustrated in the
example that follows.

Method

The data for the empirical example come from Wave I and
Wave IV of the National Longitudinal Study of Adolescent Health
(Add Health; Harris et al., 2009). Add Health began in the 1994–
1995 school year with a nationally representative sample of ado-
lescents from 80 high schools and 52 middle schools in the United
States selected with unequal probability of selection.3 The indi-
viduals were then followed from adolescence into adulthood
through four in-home interviews. Parental interviews were also
completed during the first wave. The last interview, Wave IV, was
completed in 2008, when the majority of the sample was 24 to 32
years old. At each wave, information was gathered on respondents’
social, economic, psychological, and physical well-being. Wave
IV in-home interviews were completed for 15,701 individuals.

Four role status variables were examined: marriage, college
graduation, full-time work, and parenthood (Shanahan, 2000). For
each age from 18–30, a binary variable for each status was created
indicating whether the individual occupied the status for the first
time at that age (coded 1), or had not occupied the status by that
age (coded 0). Once the individual occupied one of the role statues,
they no longer contributed data for the remaining ages for that
status (coded as missing). To account for the fact that a small
percentage of individuals occupied one of the roles before they
were 18 years old, the binary variable for age 18 will represent
whether the individual occupied the status for the first time at age
18 or younger. In essence, this is structuring the first time period

to be wider (from birth to age 18) than any of the other time
periods, which all represent 1 year.

The role status variables were taken from the Wave IV Add Health
interview. The month and year of the individual’s first marriage was
used to find the age of the respondent when they first married. The
year of the respondent’s first degree (associate’s degree, bachelor’s
degree, or graduate degree) after high school was used to determine
the age at which the first post-high school degree was obtained, by
using the age the respondent was for the majority of that year. The
date of birth of the respondent’s oldest child was used to determine the
age at which the respondent first became a parent. The age when
the person first began full-time work was directly measured in the
Add Health interview. The sample observed hazard probabilities for
each event process are listed in Table 1 and displayed in Figure 1. The
sample observed lifetime distribution function for each event process
is also displayed in Figure 1. Throughout this work, sample observed
functions were calculated with Wave IV sample weights to account
for unequal probability of selection.

Three predictors were examined, each of which was assessed
during Add Health Wave I: gender, ethnicity, and parental educa-
tion. Consistent with prior literature, it was hypothesized that all
three predictors have a significant influence on heterogeneity in
the hazard functions over time (e.g., Mahaffy, 2003). Only a small
number of categorical covariates was examined so that model
implied functions could be compared to observed functions of the
sample stratified by the different levels of the covariates, in order to
investigate the ability of the model to detect group differences. Gender
was measured as a two-category item of male (46.83%) and female
(53.17%). The measurement of ethnicity was simplified to four cat-
egories of Caucasian (52.87%), African American (20.62%), His-
panic (15.92%), and other (10.59%), included as three dummy coded
variables in the analysis with Caucasian as the reference category.
Parent education was measured as the highest level of education
achieved by either parent on a 3-point scale of less than high school
(12.85%), high school degree (25.33%), or any schooling beyond
high school (61.82%) and was entered into the model with high
school degree as the reference category. Sampling weights given by
Add Health accounting for the unequal probability of selection were
used. Individuals with missing data on any of the covariates (	1.5%)
or sample weights (	1%) were excluded from the analysis, resulting
in a final analysis sample of N � 14,557.

The discrete-time MEPSUM model was fit to the data in Mplus
6.12 using maximum likelihood and accounting for sample weights.4

The first model was run on the four event processes across the 13 time
points, without covariates, including one to six latent classes with
unstructured hazard functions as defined in the introduction. To en-
sure a global maximum likelihood solution, at least 1,000 random sets
of starting values were used for each model, with the best 500 retained

3 We are aware of the nested structure of the data and the potential for
dependence within schools, but the clustering effect is likely to be quite
small—especially given the time lag—and the example is intended to be
primarily pedagogical. Future research should examine clustering when
necessary.

4 The MLR estimator was used, which computes parameter estimates
that are robust to nonindependence of observations, by utilizing a sandwich
estimator for the standard errors (L. K. Muthén & Muthén, 1998–2010).
The robust maximum likelihood estimator is the only option in Mplus for
mixture models with sampling weights.
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for final optimization, and the resulting solutions monitored to ensure
the final log-likelihood was replicated.

Results

To select the number of classes, a number of criteria were
investigated as discussed in the model evaluation section of the
introduction. Information criteria continued to decrease as
the number of latent classes increased (Table 2) and might have
suggested more than six classes were needed if such models were
fit, based on selecting the model with the lowest BIC or AIC. This
may be partly due to the large sample size, supporting the extrac-
tion of additional latent classes. However, the relative decrease of
both the BIC and AIC was small after four classes suggesting a
more parsimonious model may be preferable (Figure 2). After
examining the hazard and lifetime distribution functions more
carefully, we selected the five class solution as it was able to more
effectively describe heterogeneity in the risk of the events over
time than the four class solution, but the same was not true when
increasing from a five class to a six class solution. The five class

solution will first be described and will then be compared to the six
class solution to describe why the five class solution was chosen.

Hazard functions for the five class solution, representing the
unique risk of event occurrence at a given age or the probability of
event occurrence given the event had not yet occurred are dis-
played in Figure 3. The lifetime distribution functions, displaying
the cumulative probability of event occurrence by a given age, are
shown in Figure 4. The median event time for an event process
within a latent class occurs when the lifetime distribution function
is equal to 0.50 (Table 3).

In the five class solution, the first class (�̂1 � 0.168) is char-
acterized by high early risk of work (ĥ18 � 0.63), followed by an
increasing risk of transition into family roles. The risk of marriage
starts low (ĥ18 � 0.03) and increases rapidly to a high risk of 0.80
at age 29. The median event time for marriage is in between ages
21 and 22, with nearly a 1.00 cumulative probability of marriage
by age 30. The risk of parenthood also starts low (ĥ18 	 0.01) and
increases in a linear fashion, though the risk is never as high as that
for marriage for any specific age (e.g., ĥ28 � 0.24). By age 30, the

Table 1
Number of Event Occurrences and Sample Estimated Hazard Probabilities

Age (years)

Parent Marriage College graduation Full-time work

Event Hazard Event Hazard Event Hazard Event Hazard

18 1,227 0.08 536 0.03 12 0.00 6,229 0.40
19 712 0.05 534 0.04 95 0.01 1,809 0.19
20 723 0.06 597 0.04 313 0.02 1,166 0.15
21 685 0.06 678 0.05 905 0.06 1,362 0.21
22 660 0.06 766 0.06 1,697 0.13 1,692 0.33
23 641 0.06 858 0.07 1,103 0.10 1,033 0.30
24 614 0.06 816 0.08 605 0.06 655 0.28
25 578 0.06 810 0.08 433 0.04 417 0.24
26 567 0.06 677 0.08 351 0.04 208 0.17
27 444 0.06 538 0.08 275 0.03 128 0.14
28 375 0.07 415 0.08 191 0.03 67 0.10
29 254 0.07 254 0.07 125 0.02 28 0.06
30 135 0.06 131 0.06 67 0.02 14 0.06

Figure 1. Sample observed functions.
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model implied probability of being a parent is 0.86 for this class,
with the median parenthood age between ages 24 and 25. The risk
of college graduation is low throughout all of the time periods
(maximum is ĥ29 � 0.03), with a small cumulative probability of
graduating college by age 30 (D̂30 � 0.17). This first class will be
labeled a “work then family” pathway (WF).

The second class (�̂2 � 0.102) is characterized by a moderate
risk of transitioning into both college and work roles in the
mid-twenties, followed by an increasing risk of transitioning into
parent and marriage roles in the later twenties. Specifically, the
risk of college peaks around ages 22 (ĥ22 � 0.42) and the risk of
work also peaks around ages 22 to 24 (ĥ22 � 0.43, ĥ24 � 0.45). The
median age for both beginning full-time work and for college
graduation is between ages 21 and 22. The risk of transitioning into
marriage is relatively low in the early twenties (ĥ22 � 0.15) but
increases into the late twenties (ĥ27 � 0.58). Risk of parenthood
similarly is low in the early twenties (ĥ22 � 0.04), but steadily
increases throughout the twenties (ĥ30 � 0.41). The median age of
marriage is between 23 and 24 with nearly a 1.00 probability of
marriage by age 30, and the median age of parenthood is between
26 and 27, with high probability of parenthood by age 30 (D̂30 �
0.88). This second class will be labeled a “college then family”
pathway (CF).

The third latent class (�̂3 � 0.217) is characterized by moderate
risk of college and work in the mid-twenties, similar to the CF
pathway mentioned previously, only the risk of transitioning into
any family role is low throughout the entire period under study.

The risk of college is moderate, at least above 0.20, for all ages
after 21. The risk is especially high at age 22 (ĥ22 � 0.42) and age
30 (ĥ30 � 0.61). The median college graduation age is between 21
and 22, with a 0.99 probability of graduating college by age 30.
The risk of work is similarly moderate for all time periods after age
21 (e.g., ĥ22 � 0.37, ĥ30 � 0.36), with a 0.98 probability of
transitioning into full-time work by age 30. The risk of transi-
tioning into a parent role is less than 0.03 for all ages, and the
risk of marriage is similarly low, peaking at 0.11 at age 28. By
age 30, there is a 0.38 cumulative probability of transitioning
into marriage and only a 0.09 cumulative probability of transi-
tioning into parenthood. This will be labeled a “college and
work” pathway (CW).

The hazard functions for the fourth latent class (�̂4 � 0.222)
look remarkably different than the other classes, in that the risk for
all events decreases over time and the risk of transitioning into a
parent role is especially high at early ages. At age 18, the risk of
beginning full-time work is 0.59 and the risk of parenthood is 0.35.
The median age for beginning full-time work is less than age 18,
with a cumulative probability of beginning full-time work of 0.95
by age 30. While decreasing in magnitude, the risk of parenthood
remains high in comparison to the other latent classes (e.g., ĥ22 �
0.30 compared to ĥ22 � 0.13 in the WF pathway). The cumula-
tively probability of becoming a parent is 0.70 as early as age 20
and reaches 0.90 by age 24. The risk of marriage is also the highest
at age 18 (ĥ18 � 0.15) and decreases throughout the time period
under study (ĥ30 � 0.05), with the median marriage time between
ages 24 and 25. The risk of college graduation is very low
throughout the entire time period (maximum ĥ26 � 0.02), with a
small cumulative probability of graduating college by age 30
(D̂30 � 0.13). This class will be labeled “early parenthood” path-
way (EP).

In the fifth class (�̂5 � 0.291), the risk for transitioning into
family roles as well as the risk of college is extremely low
throughout all of the time periods, and the risk of work is highest
at early ages and then decreases. The risk of work is 0.54 at age 18,
and quickly and steadily decreases, with a risk of less than 0.10 of
beginning full-time work for each age after 23. The median age for
transitioning into full-time work is less than age 18, with a 0.90
cumulative probability by age 30. The risk of marriage is never
higher than 0.05 for any age, nor is the risk of parenthood or
college graduation. The cumulative probability of transitioning
into marriage is 0.23 by age 30 and is 0.26 for parenthood. The
cumulative probability of graduating college by age 30 is 0.13. As

Table 2
Model Fit to Data

Latent class �2LL
Number of free

parameters BIC AIC
Smallest

class Entropy

1 �102,521.76 52 205,541.99 205,147.53
2 �98,444.65 105 197,895.81 197,099.29 0.33 0.79
3 �97,481.09 158 196,476.75 195,278.19 0.26 0.74
4 �96,784.46 211 195,591.54 193,990.93 0.11 0.76
5 �96,425.50 264 195,381.66 193,379.00 0.10 0.71
6 �96,087.98 317 195,214.68 192,809.97 0.09 0.72

Note. LL � log-likelihood; BIC � Bayesian information criterion; AIC � Akaike information criterion.

Figure 2. Information criteria as a function of the number of latent
classes. BIC � Bayesian information criterion; AIC � Akaike information
criterion.
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this class is characterized almost completely by the transition into
a work role only, this class will be labeled “work” (W).

Examining results for the six class solution revealed a substan-
tively redundant latent class, resulting in the five class solution
being selected as the final solution. In the six class solution, the
main difference is that the third class from the five class solution—
the “college and work” pathway—split into two separate classes,
which were nearly identical. Thus, the increase in complexity from
a five to a six class solution was not warranted in that it did not
substantially increase our ability to describe heterogeneity in the
hazard functions. The five class solution was selected as the
optimal number of classes, and covariates were then entered into
the model to predict class membership.5 By selecting the number
of classes without covariates and then comparing the solution to
that obtained with covariates predicting class membership, the
stability of the model can be investigated. In the model with
covariates predicting class membership only, an assumption is
made that all effects of covariates on the hazard functions are
transmitted through the latent class variable, which should hold as
long as the number of latent classes is sufficient to fully capture
heterogeneity in the hazard functions. If the size or substantive
interpretation of the classes changes, this may indicate that too few
classes have been selected and that the assumption that the cova-
riates only influence class membership is violated (Marsh, Lüdtke,
Trautwein, & Morin, 2009; Petras & Masyn, 2010).

In this case, the size of the classes as well as the parameter
estimates remained stable after the covariates were entered into the
model. As another check on the model, if we compare the aggre-
gate model implied lifetime distribution functions and the sample
observed lifetime distribution functions, we find that the average
difference between the two sets of functions is small, SRD 	
0.001. The difference between the aggregate model implied hazard
functions and sample observed hazard functions is also small,
SRH � 0.001. Thus, the model is capturing the observed overall
risk of event occurrence well, as is expected with unstructured
hazard functions.

Because the covariates predict class membership, their effects
can be interpreted to indicate how the odds of experiencing each
pattern of event histories are influenced. A complete list of all
possible odds ratios is given in Table 4, with confidence intervals
listed with the estimate, computed with a Bonferroni correction for
multiple comparisons with � � 0.05. This table reveals that
gender, ethnicity, and parental education all significantly influence

5 The “auxiliary” command of Mplus can be used as an exploratory first
step in model building, as the means of covariates across latent classes can
be examined without the covariates having an effect on the latent classes
and latent class membership.

Figure 3. Hazard functions for five class solution.
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latent class membership, as several confidence intervals do not
include 1 for each group of predictors.

For brevity purposes, we can generalize over these findings, and
we see that females are generally more likely to be in the early
parenthood pathway, and males are generally more likely to be in
the work pathway. The model implies that African Americans are
generally more likely to be in the work pathway and the early
parenthood pathway than Caucasians. Similarly, Hispanics are
more likely to be in the work pathway and the early parenthood
pathway than the college then family pathway than Caucasians. No
differences between those of other ethnicities and Caucasians were
found in terms of predicting class membership. Parental education

had an extremely consistent effect, in that the odds for individuals
who had at least one parent with a college degree of being in a
college pathway compared to any other pathway were significantly
higher than for individuals who had a parent with a high school
degree only.

The influence of covariates may also be examined by comparing
aggregate model implied lifetime distribution functions weighting
over latent classes conditional on different levels of the covariates
in the model, as discussed in the previous section. In this analysis,
we focused on the effect of parental education and computed
model implied lifetime distribution functions across different lev-
els of parental education, holding gender constant at male and
ethnicity constant at Caucasian (Figure 5, left column). The most
dramatic difference between these functions is in terms of the
cumulative probability of graduating college; individuals with a
parent with a college degree have a much higher probability of
graduating college by age 30 (D̂30 � 0.48) than individuals with a
parent with a high school degree (D̂30 � 0.26) or no parent
completing a high school degree (D̂30 � 0.20) as implied by the
model. Related, the model predicts individuals who have a parent
with a college degree have a smaller probability of beginning
full-time work at earlier ages (e.g., D̂18 � 0.37) than individuals
who have a parent with a high school degree (D̂18 � 0.50) or no
degree (D̂18 � 0.54) but that there are no virtually no differences

Figure 4. Lifetime distribution functions for five class solution.

Table 3
Median Event Time Within Latent Classes

Class Label Work Marriage Parent College

1 WF 	18 22.5 24.5
2 CF 21.5 23.5 26.5 21.5
3 CW 21.5 21.5
4 EP 	18 24.5 18.5
5 W 	18

Note. WF � work then family; CF � college then family; CW � college
and work; EP � early parenthood; W � work.
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after age 24. The model implies that individuals who have a parent
with a college degree also have a smaller risk of parenthood across
all ages, and a smaller risk of marriage at earlier ages but that the
cumulative probability of marriage by age 30 is similar across
parental education groups (range for D̂18 � 0.54–0.55).

Stratifying the Add Health sample by parent education and exam-
ining only Caucasian males for comparison purposes resulted in a
sample size of 222 for neither parent with a high school degree, 944

for at least one parent with a high school degree only, and 2,536 for
at least one parent with a college degree. The trends described by the
model implied functions were found in the stratified sample observed
functions in that those who had a parent with a college degree were
much more likely to graduate college (D30 � 0.50) than for individ-
uals who had neither parent graduate high school or at least one parent
graduate high school but who had no further education (D30 � 0.07
and D30 � 0.22, respectively; Figure 5, right column).

Table 4
Odds Ratios for Five Class Solution

Class Intercept

Gender Ethnicity Parental education

Female Black Hispanic Other No degree College

WF vs. W 0.63 [0.35, 1.15] 1.68 [0.71, 4.00] 0.15 [0.06, 0.41] 0.58 [0.30, 1.11] 0.72 [0.34, 1.53] 1.05 [0.54, 2.06] 1.00 [0.64, 1.55]
CF vs. W 0.10 [0.04, 0.27] 4.74 [2.46, 9.15] 0.30 [0.15, 0.57] 0.28 [0.11, 0.72] 0.74 [0.35, 1.55] 0.46 [0.16, 1.29] 3.26 [1.60, 6.63]
CW vs. W 0.25 [0.14, 0.44] 2.39 [1.54, 3.73] 0.45 [0.24, 0.86] 0.54 [0.26, 1.13] 1.24 [0.68, 2.26] 0.40 [0.15, 1.08] 4.00 [2.52, 6.33]
EP vs. W 0.37 [0.11, 1.22] 4.94 [2.95, 8.26] 1.31 [0.56, 3.08] 1.06 [0.45, 2.50] 0.98 [0.44, 2.16] 1.01 [0.61, 1.67] 0.73 [0.51, 1.04]
WF vs. EP 1.71 [0.59, 4.90] 0.34 [0.17, 0.67] 0.11 [0.02, 0.55] 0.55 [0.22, 1.38] 0.74 [0.24, 2.25] 1.04 [0.62, 1.76] 1.37 [0.89, 2.12]
CF vs. EP 0.28 [0.05, 1.59] 0.96 [0.46, 2.01] 0.23 [0.09, 0.60] 0.27 [0.12, 0.60] 0.76 [0.31, 1.85] 0.45 [0.18, 1.18] 4.49 [2.40, 8.42]
CW vs. EP 0.67 [0.26, 1.69] 0.48 [0.32, 0.74] 0.34 [0.12, 1.03] 0.51 [0.23, 1.15] 1.27 [0.52, 3.10] 0.40 [0.16, 0.99] 5.51 [3.22, 9.43]
WF vs. CW 2.55 [1.48, 4.42] 0.70 [0.32, 1.57] 0.33 [0.11, 1.01] 1.06 [0.52, 2.17] 0.58 [0.24, 1.40] 2.60 [1.01, 6.79] 0.25 [0.15, 0.42]
CF vs. CW 0.41 [0.12, 1.46] 1.98 [1.04, 3.77] 0.66 [0.33, 1.30] 0.52 [0.23, 1.17] 0.60 [0.28, 1.28] 1.14 [0.28, 4.60] 0.81 [0.35, 1.88]
WF vs. CF 6.16 [1.89, 20.02] 0.36 [0.11, 1.16] 0.51 [0.16, 1.57] 2.05 [0.79, 5.33] 0.98 [0.36, 2.68] 2.29 [0.74, 7.04] 0.31 [0.14, 0.67]

Note. WF � work then family; W � work; CF � college then family; CW � college and work; EP � early parenthood. Confidence intervals appear
in brackets. Bold values indicate significant odds ratios at � � .05.

Figure 5. Model implied versus sample observed lifetime distribution functions, depending on parental
education.
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Note, however, that the model underestimated differences be-
tween these groups in that it overestimated the probability of
graduating college for those with neither parent graduating high
school (model implied D̂30 � 0.20; sample estimated D30 � 0.07).
The trend was also consistent between the model implied and
sample observed functions for work, with individuals with a parent
with a college degree having a delay in the transition to full-time
work (D18 � 0.39 versus parent with a high school degree D18 �
0.62). Also as implied by the model, individuals with a parent with
a college degree had a smaller probability of parenthood across all
ages as well as a smaller probability of marriage at early ages.
Overall, the average difference between the model implied func-
tions and the sample observed functions across the three parental
educations categories was small, SRD � 0.03.

It is unclear whether the differences found between the sample
observed lifetime distribution functions and the model implied
functions weighting over latent classes are due to utilizing rela-
tively few classes to capture the multivariate distribution of events,
or due to possible minor misspecifications in the multinomial
model for class membership, such as the omission of interaction
effects. However, considering the small number of covariates
included in the model, and the relatively simple expression of
covariate effects, the model appears to be relatively stable and to
be reproducing the observed patterns well.

Discussion

A discrete-time multiple event process survival mixture (MEP-
SUM) model was introduced in this article, which allows research-
ers to investigate the order and timing of multiple nonrepeatable
events that can occur at the same point in time. Both to be
consistent with theory, as well as to understand how the events are
related to each other, it is important to consider the relationship
between the hazard functions rather than to dissect the events in
order to apply more traditional methods. This model is proposed as
an indirect application of mixture modeling, as it is employed as a
mathematical device—a way to summarize the risk of multiple
events. Thus, rather than subjectively classifying individuals based
on their response patterns and examining the resulting hazard
functions within those groups, the model recognizes uncertainty in
group membership and allows the examination of predictors on
latent classes (Nagin, 1999).

Importantly, the MEPSUM model is a data-driven method, and
the inclusion of auxiliary information is essential to understanding
the utility of the latent classes that are derived from the model
(Petras & Masyn, 2010). To the extent that the events are related,
the model will require multiple latent classes to capture these
associations, regardless of whether event times differ qualitatively
or quantitatively across individuals. This interpretation of the
latent classes is similar to growth mixture models, in which classes
may or may not represent qualitatively distinct groups (Bauer &
Curran, 2003). The classes obtained from a MEPSUM model
provide a glimpse of prototypical multivariate pathways, and thus
of how event times are related, but they should not be regarded as
representing all possible pathways. Ultimately, examining how the
heterogeneity in classes is influenced by covariates should be the
end focus of the analysis. As Nagin and Odgers (2010) argued for
a related model, the purpose of latent groups in this model is to
draw attention to differences in the causes and consequences of

different pathways rather than to suggest the population is com-
posed of literally distinct groups.

In the empirical example in this article, the MEPSUM model
was used to capture heterogeneity in the hazard functions for
multiple life course events. It provided information on how life
events differ in their timing and configuration across people, with
five prototypical event history patterns: work then family, college
then family, college without family, early parenthood, and work
only. It also found that gender, ethnicity, and parental education all
significantly influenced the occurrence and relative timing of life
transitions in adolescence and young adulthood. The large sample
size allowed stratification of the sample by different levels of
covariates and comparison of model implied functions to sample
estimated functions. Overall, there was general consistency in the
functions implied by the model and the sample observed functions,
such as females having a larger probability of parenthood at earlier
ages than males. It should be noted that a relatively large sample
size may be required for this model, as it aims to model hetero-
geneity in multiple hazard functions (guidelines on what exactly
constitutes a “large sample size” will require extensive simulation
studies and should be the subject of future research).

A limitation of this work is that only a small number of cova-
riates were examined in the empirical example, both for simplicity
purposes as well as so sample stratified functions could be calcu-
lated to investigate model performance. How the model performs
with numerous covariates and with more complicated inclusions of
covariates is yet to be seen. Potentially interesting directions for
future research would be to investigate model performance with
additional covariates, and consideration of how the addition of
direct effects of covariates on the hazard functions could impact
the performance of the model. A “multiple groups” version of the
model could also be of interest, in which separate latent classes are
estimated within each of two or more predefined subpopulations
(e.g., males and females) and invariance tests are implemented to
evaluate whether the pathways obtained across these subpopula-
tions are similar or dissimilar.

An additional issue in need of further consideration is the
adequacy of the approximation provided by the finite mixture form
for the underlying multivariate hazard distribution. Research con-
ducted on a related model, the semiparametric groups-based tra-
jectory model (SPGM; see Nagin, 1999), is pertinent to this
question. Like the MEPSUM, the SPGM uses a discrete-point
finite mixture to approximate an underlying distribution, namely,
the distribution of random effects underlying individual differ-
ences in change over time. Simulation research on the SPGM
conducted by Brame, Naglin, and Wasserman (2006); Nagin
(2005), and B. Muthén and Asparouhov (2008) has demonstrated
that a discrete-point finite mixture can reasonably approximate
various random effects distributions of low dimensionality. More
recently, however, Sterba, Baldasaro, and Bauer (2012) deter-
mined that the adequacy of the approximation suffers when the
random effects distribution is of higher dimensionality, particu-
larly for binary outcomes at low sample sizes. The latter results
give greater emphasis to our caution that the MEPSUM model is
likely to perform best in large samples. Although these results are
informative, it is also worth noting a key difference between the
SPGM and MEPSUM. Whereas there are widely used alternative
models to SPGM for capturing individual differences in growth
trajectories (e.g., multilevel growth models or latent curve mod-
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els), to our knowledge no alternative models currently exist for
modeling a multivariate distribution of hazard functions. Further
research developing and comparing alternative approaches for
modeling multiple event processes should thus be encouraged.

While there are many possible directions for future research, it
is our hope that the model proposed in this article will provide a
useful framework from which to evaluate the interdependencies of
multiple event processes measured in discrete time.
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