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Psychologists are applying growth mixture models at an increasing rate. This arti-

cle argues that most of these applications are unlikely to reproduce the underlying

taxonic structure of the population. At a more fundamental level, in many cases

there is probably no taxonic structure to be found. Latent growth classes then cate-

gorically approximate the true continuum of individual differences in change. This

approximation, although in some cases potentially useful, can also be problem-

atic. The utility of growth mixture models for psychological science thus remains

in doubt. Some ways in which these models might be more profitably used are

suggested.

Growth mixture models (GMMs) are designed to separate a general population

of individuals into subgroups characterized by qualitatively distinct patterns of

change over time. In this article, I offer a few observations on the application of

these models in psychological science. Like many, I was initially excited about

the potential of GMMs. After several years of evaluating these models and

reviewing applications, however, I am now skeptical that they will meaningfully

advance our understanding of psychosocial development. In what follows, I

outline key methodological and theoretical concerns that I have with current

applications of GMMs.
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SOME CONTEXT

Every now and then a new statistical model is developed that captivates the

field. In the area of longitudinal data analysis, models for mean change, such as

ANOVA and MANOVA, quickly went out of favor in the 1990s as individual

trajectory models, like the latent curve model (LCM) and multilevel growth

model, were shown to have important advantages. Now, GMMs seem to be

gaining favor for their ability to parse unobserved heterogeneity in change over

time. Go to a conference on developmental psychopathology and you’ll see any

number of longitudinal data sets analyzed by GMMs.

The idea of clustering trajectories is not new to psychology. McCall, Appel-

baum, and Hogarty (1973) used a sophisticated clustering procedure to differ-

entiate patterns of IQ development 2 decades before the debut of GMMs. But

cluster analysis never gained much momentum, perhaps because many cluster

analyses are performed via heuristic algorithms (e.g., minimizing squared Eu-

clidean distances). These algorithms will produce clusters from any data, even

if the data is generated randomly. Given this, an analyst’s claim that “clus-

ter analysis of the data revealed four clusters” is hardly credible. The analyst,

not the algorithm, selected four clusters because four clusters seemed to be a

good number for the data. Of course, had the analyst used a different clustering

rule, entirely different clusters might have emerged. To many scientists, cluster

analysis is thus tainted by an unavoidable subjectivity. Indeed, one prominent

psychologist, sympathetic to the general idea of clustering, remarked to me that

he could not help but feel that cluster analysis was a little like reading tea

leaves.

Perhaps one of the greatest attractions of GMMs is that they appear to provide

a more principled, objective approach for identifying trajectory groups (Connell

& Frye, 2006). In contrast to heuristic algorithms, the clusters are specified as

part of a formal statistical model with parameters estimated using conventional

methods like maximum likelihood. To their credit, Daniel Nagin and his col-

leagues were the first social scientists to suggest this approach for clustering

trajectories (Land & Nagin, 1996; Nagin & Land, 1993; Nagin & Tremblay,

1999). In part, their inspiration was Moffitt’s (1993) influential theory on the

development of antisocial and criminal behavior. Moffitt posited a developmen-

tal taxonomy consisting of two etiologically distinct groups: one group whose

antisocial behavior onsets in adolescence and then desists in early adulthood,

and another group that exhibits childhood onset and persistent antisocial behav-

ior throughout adulthood. Quite laudably, Nagin and Land sought to develop a

statistical model that could be used to more adequately evaluate this theory and

others like it.

In later publications, Nagin (1999) and B. Muthén & Shedden (1999) pre-

sented GMMs for general consumption and offered user-friendly software for
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fitting the models. These were positive contributions, but there were also un-

intended consequences. Focused on promoting the possibilities of the models,

and their new accessibility to applied researchers, neither Nagin nor B. Muthén

dwelled much on the assumptions or potential limitations of GMMs. The rapid

pace of software development also meant that GMMs were delivered to applied

researchers well before independent methodologists could critically examine the

robustness of the models in peer-reviewed publications. Perhaps not unreason-

ably, users trusted that GMMs could divine both the number of groups and

the shapes of the group trajectories, even when there were no specific taxonic

hypotheses to motivate the analysis.

I, too, was initially enthusiastic about GMMs. When a fellow graduate student

and I attended the conference New Methods for the Analysis of Change in 1998,

it was Bengt Muthén’s presentation on GMMs that we found most engaging.

Here was a method that could be used to tease apart population heterogeneity in

change over time. No longer would we be limited to single trajectory models like

latent curve analysis—now we could allow for multiple trajectories. And given

the choice between a single trajectory and multiple trajectories, who would

not opt for the latter? Surely, no population is completely homogeneous. In

retrospect, it’s clear that, in my naiveté, I was imposing a false dichotomy on

the models. LCMs do not imply one trajectory, they imply many trajectories.

But at the time I was simply too caught up in the excitement of these new and

improved growth models to think through their real benefits or possible costs.

I was so excited, in fact, that I set about writing a post-doctoral fellowship

grant with Kenneth Bollen and Patrick Curran focused on studying GMMs in

more detail. The aims of the proposal were to study the analytics of the GMM,

to consider the model’s performance with simulated data, and then to apply the

model with real data. Soon after I began the fellowship, I attended a symposium

on advances in modeling individual development at the 2001 meeting of the So-

ciety for Research in Child Development. One of several excellent presentations

was Bengt Muthén’s talk on GMMs. At the end of his talk, Dr. Muthén made

an offhand remark that there was a great deal of “low hanging fruit” ripe for the

plucking by graduate students and post-docs looking for dissertation or fellow-

ship topics related to GMMs. The discussant, Mark Appelbaum, then quipped

that we had better watch out—low hanging fruit is often rotten.

Those words were apropos. My initial exuberance for GMMs had been slowly

turning to pessimism. To be sure, GMMs could recover subgroups characterized

by different patterns of change over time under just the right conditions. But

they could also provide evidence of illusory subgroups when assumptions of

the model were incorrect. Further, it seemed to me those assumptions would

be incorrect most of the time in real-data applications. No wonder, then, that I

stopped short of fulfilling the last aim of my fellowship, to conduct an empirical

analysis using a GMM.
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FIGURE 1 Number of citations by year for key early papers on growth mixture modeling

in psychological research by B. O. Muthén & Muthén (2000), B. Muthén & Shedden (1999),

and Nagin (1999).

In the years since, I have seen the number of applications of GMMs continue

to rise in the literature. To put a bit of data behind this observation, I performed a

citation search for three early papers introducing GMMs to applied researchers,

namely, Nagin (1999), B. Muthén and Shedden (1999), and B. O. Muthén and

Muthén (2000). The total citation counts for the three papers were, respectively,

200, 105, and 109 citations, and the overall trend shown in Figure 1 points to

increasing use of GMMs (Web of Science, Science Citation Index, retrieved

4/8/07).1 The cautions voiced by myself and others concerning the applica-

tion and interpretation of these models (e.g., Bauer & Curran, 2003a, 2003b,

2004; Eggleston, Laub, & Sampson, 2004; Hoeksma & Kelderman, 2006; Rau-

denbush, 2005; Sampson & Laub, 2005; Sampson, Laub, & Eggleston, 2004)

seem to have gone largely unheard. The purpose of this article is to try to con-

vey, more convincingly, my concerns about the use of GMMs in psychological

research.

1In comparison, two foundational papers on latent curve modeling, Meredith & Tisak (1990) and

McArdle & Epstein (1987), were cited 171 and 119 times, respectively, between 1999 and 2006. A

key paper describing how longitudinal data could be analyzed by way of hierarchical linear models

(mutlilevel models) published by Bryk & Raudenbush (1987) was cited 283 times over the same

period.
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METHODOLOGICAL CONCERNS

The ideal application of a model should meet three criteria. First, the core as-

sumptions of the model should be met, approximately. Alternatively, the model

should be known to provide robust inference despite the violation of some model

assumptions. Second, the model should provide a reasonable representation of

reality. That is, the model should resemble, as much as possible, the true under-

lying structure of the data. Third, the results obtained from the model should

be scientifically meaningful (e.g., provide tests of specific, disconfirmable hy-

potheses). In this section, I focus on the first of these criteria by describing the

core assumptions of the GMM and then considering whether these assumptions

are met in practice. When assumptions are not met, the sensitivity of the results,

particularly the number of estimated latent classes, will be of key concern. For

contrast, the LCM is presented first and this is then extended to a GMM.

The Latent Curve Model

The LCM (McArdle, 1988; McArdle & Epstein, 1987; Meredith & Tisak, 1984,

1990) may be written as

yi D ƒ˜i C ©i ; (1)

where yi is a p � 1 vector of repeated measures for person i , ˜i is a q � 1

vector of latent trajectory parameters (e.g., intercept and slope), ƒ is a p � q

matrix of factor loadings, and ©i is a p � 1 vector of residuals (usually assumed

to be independent over time). In most applications, the values of the factor

loadings are fixed to particular values to indicate that the individual trajectories

follow a specific function (Bollen & Curran, 2006; Browne, 1993). Often (but

not always), the p � p covariance matrix for ©i , designated ‚, is also assumed

to be diagonal, implying that the correlations among the repeated measures are

entirely accounted for by the underlying growth factors.

To complete the specification of the LCM we must also write a model for

the latent variables. In the simplest case, the latent variables can be expressed

in mean deviation form as

˜i D ’ C —i ; (2)

where ’ is a q �1 vector holding the means of the individual trajectory parame-

ters and —i is a q � 1 vector of residuals, or random effects, reflecting individual

differences from these means (assumed to be uncorrelated with ©i ). Note that

the inclusion of the random effects in the model implies that there are infinitely

many possible individual trajectories in the population and that each individual

follows a unique trajectory.
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Substituting Equation 2 into Equation 1, we obtain the following equation:

yi D ƒ’ C ƒ—i C ©i ; (3)

which is sometimes referred to as an unconditional LCM. If we make the as-

sumptions that —i and ©i are normally distributed, then this implies that the

marginal distribution of the repeated measures is

f .yi / D ¥
�

ƒ’; ƒ‰ƒ0 C ‚
�

; (4)

where ¥ is a p-dimensional normal probability density function. Maximum like-

lihood (ML) may then be used to estimate the parameters of the model. Note that

the ML estimates are robust to certain forms of non-normality (Browne, 1984;

Browne & Shapiro, 1988; Satorra, 1990; Satorra & Bentler, 1990).2 Other esti-

mators for these models also exist that forgo the normality assumption (Browne,

1984; Yuan, Bentler, & Chan, 2004).

If predictors of change are present, then they may be incorporated by aug-

menting the latent variable model as follows:

˜i D ’ C �xi C —i ; (5)

where xi is an r � 1 vector of exogenous predictors and � is a p � r matrix of

regression coefficients relating the predictors to the latent variables. This model

is often referred to as the conditional LCM.

Similar to before, if we substitute Equation 5 into Equation 1, we obtain the

following model for the observed repeated measures:

yi D ƒ .’ C �xi C —i / C ©i (6)

D ƒ’ C ƒ�xi C ƒ—i C ©i :

Like most structural equation models, LCMs are typically estimated from the

joint distribution of yi and xi . However, to make the extension to the GMM,

we instead consider the conditional distribution of yi given xi . For a typical

structural equation model, Jöreskog (1973) showed that both the joint and con-

ditional likelihoods yield equivalent estimates when xi is exogenous. However,

Arminger, Stein, and Wittenberg (1999) demonstrated that the conditional for-

mulation is preferable for mixture models.3

2The standard errors of the ML estimates can be biased when the data are not multivariate

normal, but robust standard errors can be computed via the method of Satorra & Bentler (1994).
3In contrast to the LCM, this conditional formulation is standard for multilevel growth models.
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If we make the assumption that both ©i and —i are normally distributed in

Equation 6, then yi has the probability density function

f .yi jxi / D ¥
�

ƒ’ C ƒ�xi ; ƒ‰ƒ0 C ‚
�

: (7)

As before, this expression leads naturally to a maximum likelihood estimator for

the model. Again, the ML estimates are robust to certain forms of non-normality.

Note that there are many possible ways to extend the simple LCMs presented

here. One can, for instance, include time-varying predictors, latent predictors, or

latent outcomes in the model, among other possibilities (see Bollen & Curran,

2006). The key extension that is the focus of this article, however, is to allow

for heterogeneity in change over time across latent subgroups in the population.

The Growth Mixture Model

The key notion of the GMM is that the population is composed of K latent

classes, each characterized by its own LCM. Each class thus has its own mean

trajectory, and usually it is the mean trajectory that is used to name the class (e.g.,

“high-chronic” or “low-increasing”). Systematic individual differences from the

mean trajectory within classes may be allowed, as in B. Muthén & Shedden

(1999), or not, as in Nagin (1999). Here I present the model in a general way,

later noting common restrictions used in practice.

For the unconditional GMM, we elaborate Equation 4 to account for the

multiple latent classes mixed together in the population as follows:

f .yi / D

K
X

kD1

 k¥k

�

ƒk’k ; ƒk‰kƒ0

k C ‚k

�

: (8)

The distribution of the repeated measures is thus a finite mixture of normal dis-

tributions with means and covariances structured similarly to an LCM (relying

on the assumption that ©i and —i are normally distributed within-class, as in

Equation 4). All parameters have the same interpretation as in the LCM. Ac-

cordingly, differences in ƒk correspond to class differences in trajectory form,

differences in ’k capture differences in the mean trajectories of the classes, and

differences in ‰k and ‚k capture differences in the dispersion of the individual

trajectories and time-specific residuals within classes, respectively. The new pa-

rameter,  k , represents the probability that a participant belongs to class k and

is also interpretable as the proportion of individuals within the population from

class k.

To be general, Equation 8 includes the subscript k after each parameter matrix

to indicate that all of the parameters can vary over latent classes. Constraints

are often imposed, however, to simplify the model. Commonly, the form of the
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individual (and mean) trajectories is assumed to be equal such that ƒk D ƒ. The

dispersion matrices may also be held equal over classes, that is, ‰k D ‰ and

‚k D ‚. Seldom motivated by theory, these constraints are most often imposed

for statistical expedience (e.g., to guarantee a global maximizer; see Hipp &

Bauer, 2006). Alternatively, assuming that there is no within-class variability in

the individual trajectories (i.e., ‰k D 0) produces a model similar to Nagin’s

(1999).

At this point it is worth contrasting three alternative ways of representing

individual differences in change over time with these models. If there is but one

class, the GMM reduces to the LCM and all individual differences in change

are within-class differences captured by the dispersion matrix ‰ . Alternatively,

if we fit a Nagin-type model (e.g., where ‰k D 0 and K > 1), then differences

among the individual trajectories must be captured entirely by between-class

differences, represented in the vectors ’k . Finally, in the general GMM (e.g.,

where ‰k ¤ 0 and K > 1), individual differences in change over time are

decomposed into a between-class component (differences in ’k) and a within-

class component (the dispersion matrix ‰k).

Because in general, individual differences in change over time are separated

into two parts in the GMM, we must consider both parts when adding predictors

to the model. Prediction may be either of class membership (the between-class

component) or of relative standing within class (the within-class component), or

both. Therefore, we elaborate Equation 8 to be a conditional GMM of the form

f .yi jxi/ D

K
X

kD1

 ik.xi /¥k

�

ƒk’k C ƒk�kxi ; ƒk‰kƒ0

k C ‚k

�

; (9)

where

 ik.xi / D
exp

�

’ck
C ”0

ck
xi

�

K
X

kD1

exp
�

’ck
C ”0

ck
xi

�

: (10)

The two key changes in the model, relative to Equation 8, are to make the

class probabilities a multinomial function of xi in Equation 10 (between-class

prediction)4 and to make the class means of the trajectory parameters conditional

on the covariates through the linear function ƒk’k C ƒk�kxi (within-class

4For identification, one of the classes is declared as the reference class and the intercept (’ck
)

and slopes (”ck
) of the multinomial regression for this class are set to zero. For example, if the last

class were the reference class, then ’cK
� 0 and ”cK

� 0. For interpretation, the slope estimates

are typically exponentiated to provide odds ratios indicating the increased odds of being in class k

relative to the reference class for each unit change in x.
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prediction). Just as with the unconditional GMM, a variety of constraints are

possible for this model.

Assumptions Met or Mangled?

The formulation and fitting of GMMs requires a number of assumptions. Here I

enumerate some of the key assumptions of the model, consider how often these

assumptions are met in practice, and survey results on the robustness of the

GMM when specific assumptions are violated. I am particularly concerned with

recovery of the latent class structure, which is often used to develop and eval-

uate taxonomic theories, identify problematic subgroups, and motivate targeted

interventions. My conclusions about whether or not assumptions are typically

met in practice are based on a survey of 21 articles published in 2005 that

cited B. O. Muthén & Muthén (2000). Most of these articles focused on sub-

stance use (alcohol, cigarettes, marijuana, etc.), aggression/conduct problems, or

depression, and most reported three or four latent trajectory classes.

Assumption 1: Within-class conditional normality. Most GMMs assume

that the repeated measures are normally distributed within classes (conditional

on any exogenous predictors), although it is possible to modify this assumption

for certain types of outcomes (e.g., binary, ordinal, or count outcomes). If there is

more than one class, then the assumption of within-class normality implies that

the marginal distribution of the repeated measures (pooled over classes) must be

non-normal. Because the latent classes are unobserved, it is this non-normality

that is used to infer the presence of the latent classes and recover their char-

acteristics. But non-normality can arise through other mechanisms that do not

imply the existence of underlying population subgroups. In particular, in virtu-

ally all of the 21 applications I reviewed, limitations of measurement precluded

the possibility of obtaining normally distributed repeated measures, irrespective

of whether or not latent subgroups were mixed together in the population.

In several applications, the outcome was measured as a sum of several pro-

portions (reflecting peer nominations). For proportions, normality will only be

approximately attained if the denominators are large and there is a mid-range

probability of endorsement, neither of which was the case in these applica-

tions. Linear composites were also common. Such composites, however, are

often skewed and have pronounced floor effects for domains like substance use

and aggression. In addition, log-transformed counts made several appearances.

Here, the log transformation might aid skew but would be unlikely to correct for

the “piling up” of zeros that is typically seen with this form of measurement.

Finally, the outcome variable was in some cases ordinal. Even with many cate-

gories, however, interval-level spacing is far from assured. Thus, mixture or not,
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the assumption of within-class normality was in most applications an impossi-

bility. Despite this, in only one case did the authors select a GMM explicitly

formulated for non-normal outcomes (due to the binary nature of the dependent

variable).

As shown by Bauer & Curran (2003a), if the marginal distribution of the re-

peated measures is non-normal, a GMM with multiple classes will almost always

fit better than a single-group LCM, regardless of the source of non-normality.

The problem arises because a mixture of normal distributions can approximate a

variety of non-normal shapes, even in the absence of true population subgroups.

This is shown in Figure 2 for a sequence of five repeated measures. The figure

contrasts a non-parametric kernel density estimate with the density curve im-

plied by a 2-class GMM over five occasions of measurement (for details, see

Bauer & Curran, 2003b). Although the mixture closely approximates the kernel

estimator, the latent class structure does not reflect the actual organization of

individuals within the population: In this case, the data were generated from

a unitary (but non-normal) distribution, not a mixture of normal distributions.

Of course, distortions of the latent class structure would also arise if the data

had been generated from a mixture of non-normal distributions and then fit by

a mixture of normals (Hoeksma & Kelderman, 2006; Tofighi & Enders, 2007).

FIGURE 2 Kernel density estimates for five non-normal repeated measures simulated to

have skew 1.5 and kurtosis 6 superimposed with the implied density obtained from a two-

class growth mixture model with normal component distributions.
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Given the preponderance of non-normal data in psychological research (Micceri,

1989), this problem is particularly vexing.

The conundrum is this: Our measurement instruments are typically incapable

of producing observations that meet the conditional normality assumption, yet

even mild violations of this assumption will typically result in the estimation of

too many latent classes (Bauer & Curran, 2003a; Tofighi & Enders, 2007). This

clearly compromises the usefulness of the GMM for evaluating taxonomic theo-

ries, as hypotheses of population heterogeneity will almost never be disconfirmed

even when they are wrong. More broadly, the chance that the estimated latent

classes will accurately map onto distinct population subgroups seems rather re-

mote, even if such subgroups truly exist. The odds of identifying the correct

latent class structure would improve if better measures could be developed or if

GMMs for count or ordinal outcomes were implemented when appropriate.

Assumption 2: Properly specified mean and covariance structure.

Another assumption of the GMM is that, within classes, the growth model

accurately reproduces the means, variances, and covariances of the repeated

measures. This assumption is rarely assessed in practice. In a few of the appli-

cations I reviewed, reasonable model fit was established for the standard LCM

before proceeding to the GMM. Others, however, justified use of a GMM from

the poor fit of the LCM. Although this conjecture might seem reasonable, the

poor fit of the LCM could also be indicative of some other misspecification that

the latent classes simply serve to cover up.

This issue can be clarified by considering the covariance structure implied

by the model. Drawing on Bauer & Curran (2004), the covariance matrix of

the aggregate repeated measures data implied by an unconditional GMM can be

expressed as

† D

K
X

kD1

K
X

j DkC1

 k j

�

ƒk’k � ƒj ’j

� �

ƒk’k � ƒj ’j

�0

C

K
X

kD1

 k

�

ƒk‰kƒ0

k C ‚k

�

:

(11)

Notice that this represents an additive decomposition of the overall covariance

matrix into a portion due to the class mean differences, the first term, and a

portion due to within-class covariance, the second term. As a result, misspeci-

fication of the within-class covariance structure (the second term) may lead to

compensatory estimation of latent classes that differ in their class means (the

first term).



768 BAUER

FIGURE 3 Left: Depiction of a latent curve model where the average trend is the solid

line and variability is represented by the shaded region enclosing 95% of the individual

trajectories at any given timepoint. Right: The class trajectories obtained from a four-class

growth mixture model assuming no within-class variability.

As a salient example, consider the case where the data arises from a LCM

(there is only one class, so all individual variability is within-class variability),

but a Nagin-type GMM is fit to the data that constrains the within-class vari-

ability to be zero (e.g., ‰k D 0) and the residuals to be uncorrelated (e.g., ‚k

is diagonal). In this case, the misspecification of the within-class model forces

the estimation of spurious latent classes that differ in their mean trajectories to

capture the covariances among the repeated measures. Visually, the compari-

son between the true model and fitted model is shown in Figure 3. In the left

panel, the true continuous distribution of individual trajectories is indicated by

the 95% confidence bands, whereas in the right panel the individual variability

is parsed into discrete group trajectories. These group trajectories do not rep-

resent “distinct” subgroups, they are simply a necessary consequence of the

fact that the repeated measures are correlated. Similarly, other misspecifications

of the covariance structure (other than assuming ‰k D 0) could also lead to

compensatory estimation of spurious latent classes.

As model specification checks are not yet well developed for GMMs, it

is unclear how often, in practice, covariance structure misspecifications have

impacted latent class estimation. For models involving a limited number of

observed variables, selecting the number of classes based on fitting unrestricted

normal mixture models may help to guard against this possibility (Bauer &

Curran, 2004).

Assumption 3: Effects of exogenous predictors are linear. A key as-

sumption of the conditional GMM is that the relationships between exogenous
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predictors and the individual trajectory parameters are linear within classes.

This assumption was not explicitly considered in any of the 21 applications I

reviewed. What, then, would be the consequence of failing to model a nonlinear

effect? Bauer and Curran (2004) considered this question for mixtures of struc-

tural equation models and showed that the failure to model nonlinear effects can

prompt the estimation of spurious latent classes.

To see how this problem might manifest in a GMM, I generated a sample

of 600 cases from a conditional LCM that included a nonlinear effect of the

exogenous predictor, x, on the intercepts of the individual trajectories, ˜1. This

nonlinear relationship is depicted in the top panel of Figure 4, superimposed on

the actual intercept values for 200 of the simulated cases. Here, the intercept

might represent initial levels of some sort of problem behavior, such as antisocial

behavior, and x might be a protective factor, such as the quality of the home

environment. Particularly low quality home environments might be predictive of

higher initial levels of antisocial behavior, but there may be little difference in

the antisocial behavior of children experiencing medium and high quality home

environments, producing a curve of “diminishing returns.”

I next fit a one-class GMM to this data, assuming that x is a linear predictor of

˜1 (equivalent to a standard conditional LCM). This produced the regression line

shown in the middle panel of Figure 4. The line is not completely misleading—it

provides a first-order approximation to the true function and correctly indicates

the negative relationship between the two variables—but it is also clearly an

imperfect summary of the true relationship. If I now add a second class to the

GMM, include x as a class predictor, and allow the within-class effect of x to

differ across classes, I obtain the two regression lines shown in the bottom panel

of Figure 4. This two-class model is preferred by Bayes’ Information Criterion

(BIC2 D 9295 < BIC1 D 9414).5 Further, both the adjusted likelihood ratio test

of Lo, Mendell, and Rubin (2001) and the boostrapped likelihood ratio test of

McLachlan (1987) rejected the single-class model with p < :0001. As can be

seen, the improvement in fit is due to the fact that each regression line captures a

different aspect of the underlying nonlinear relationship. The regression line for

the first class, characterized mainly by low x values, is steeply negative, whereas

the regression line for the second class, characterized by medium and high

x values, is virtually flat, reflecting the asymptotic nature of the relationship. We

might thus profitably regard the two classes as providing local approximations

to the true function (Bauer, 2005). In practice, however, it is more likely that the

classes would be interpreted as two qualitatively distinct population subgroups,

despite the fact that the individual differences are in fact quantitative in nature.

Whether unmodeled nonlinear effects produced spurious classes in the 21 ap-

plications I reviewed is unclear, but it is certainly a possibility. For the majority

5Across 500 simulated data sets, the two-class GMM was favored over the one-class GMM by

the BIC 100% of the time.
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FIGURE 4 Top: The nonlinear relationship between predictor x and trajectory intercepts

in the population. Middle: Result of fitting a latent curve model for which the effect of x was

specified as linear. Bottom: Result of fitting a two-class growth mixture model for which the

within-class effect of x was specified as linear (symbols indicate class membership based on

modal class probability). Two hundred data points shown.
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of the applications, the range of the dependent variable was limited and floor

effects were likely. A nonlinear, asymptotic regression function, such as that

depicted in the left panel of Figure 4, is often better justified statistically in

such cases than a linear function that does not respect the limited range of

the outcomes. In practice, this assumption can be checked by adapting stan-

dard regression diagnostics (e.g., plotting residual factor score estimates against

predicted values from a conditional LCM).

Assumption 4: Missing data are MAR. As typically used, GMMs assume

that the data are missing at random. In the applications I reviewed, the attri-

tion rate averaged 20% (ranging from 3% to 44%). Given that most of these

applications involved sensitive and sometimes criminal behaviors, missingness

may be partially a consequence of the missing values, even after conditioning

on the observed data, a violation of the MAR assumption. Further, when cases

with completely missing data differ from those that have at least partial data,

this results in the well-known problem of non-response bias. Given the mean

consent rate of 77% (ranging from 54% to 90%), this too is a potentially serious

issue for the applications I reviewed.

One reason for concern is that non-ignorable missingness can result in dis-

torted distributions for the observed data. For instance, if the probability of

missingness for y is an increasing function of y, then high y values will be

under-represented in the observed data distribution, producing negative bias in

the sample mean and variance estimates. Additionally, the overall shape of the

observed data distribution may be altered relative to what would have been

observed with complete data. If the distributions of the repeated measures are

sufficiently distorted, this may in turn impact recovery of the correct number of

latent classes in a GMM analysis (see Assumption 1).

As an initial evaluation of this issue, I conducted a small simulation study

using three different population structures for five repeated measures: an LCM,

a two-class GMM with equal class sizes, and a two-class GMM with unequal

class sizes (details shown in Table 1). I then deleted a subset of the simulated

data values to produce three missingness patterns: complete data, 23% non-

response and 20% attrition (average missingness), or 42% non-response and

39% attrition (extreme missingness). The probability of missingness was an

increasing function of the dependent variable, resulting in a clear violation of the

MAR assumption. Five hundred replications with N D 500 cases contributing

at least one non-missing observation were generated for each combination of

population model and missingness pattern. GMMs with one, two, and three

classes were then fit to the data and the best fitting model was determined by

examining the BIC. At this sample size, the BIC has been shown to outperform

the adjusted likelihood ratio test for selecting the number of classes in a growth

mixture model and to perform as well as the more computationally intensive
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TABLE 1

Population Parameter Values for Simulations Evaluating Influence of Non-Randomly

Missing Data on the Estimation of Growth Mixture Models (GMMs).

Population Models Include a Linear LCM (1-Class GMM), and 2-Class Linear GMMs

with Equal or Unequal Class Proportions

GMM (50/50) GMM (25/75)

Parameter LCM Class 1 Class 2 Class 1 Class 2

’1 5 6 4 6.5 4.5

’2 1 1.2 .8 1.3 .9

§11 2 1 1.25

§21 �.1 �.3 �.25

§22 .25 .21 .22

™11; ™22 ; ™33 ; ™44; ™55 .67, .68, .87, 1.22, 1.73

Missing Data Process

Average Non-Response: logit(missing y1 to y5) D �6 C :87y1

Attrition (t > 1): logit(missing yt to y5) D �6 C :39yt

Extreme Non-Response: logit(missing y1 to y5) D �6 C 1:1y1

Attrition (t > 1): logit(missing yt to y5) D �6 C :51yt

Note. ƒ D [1 0, 1 1, 1 2, 1 3, 1 4] for all models. Models are mean and covariance equivalent.

Classes are equidistant in two GMMs.

bootstrapped likelihood ratio test (Nylund, Asparouhov & Muthén, 2007). As

such, only the BIC was used for model selection in this demonstration.

When data were generated from the LCM, the single-class model was cor-

rectly selected 99.6% of the time with complete data, 99.8% of the time with

average missingess, and 97.8% of the time with extreme missingness. Exam-

ination of the repeated measures distributions suggested that the missingness

mechanism was not strong enough, even in the extreme condition, to induce

sufficient non-normality that extra latent classes would be needed to reproduce

the data. The two-class GMM with equal class sizes displayed similar robust-

ness: the two-class model was correctly selected in over 99% of replications

in all three missingness conditions. In this case, the mixture of the two classes

produced repeated measures distributions with strong negative kurtosis (e.g.,

flat and sometimes bimodal peaks). This shape persisted even with the selec-

tive deletion of high values from the repeated measures distributions and hence

model selection was unaffected by the missing data.

In contrast to the other two population models, the estimated latent class

structure for the two-class GMM with unequal class sizes was less robust: the

percentage of replications for which the two-class model was correctly selected

decreased from 95.2% with complete data to 75.8% with average missingness to

40.2% with extreme missingness. When the two-class model was not preferred,
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the one-class model (LCM) was almost always selected.6 This result can again

be explained by considering how the observed data distributions of the repeated

measures deviated from the complete data distributions. Given the mixture of a

large “low” class and a small “high” class, the dominant characteristic of the

complete data distributions was positive skew. Selectively deleting high values

from these distributions reduced their skew, producing distributions that were

more normal in appearance. Differentiating between one- and two-class models

then became quite difficult.7

In summary, under the limited set of conditions considered here, it appears un-

likely that violation of the MAR assumption would result in the over-extraction

of latent classes if data were actually generated from a single-group LCM. In

contrast, there is some risk that, when classes do exist, smaller extreme classes

will be under-represented in the observed data and hence become more difficult

to recover. Note, however, that even if the correct number of latent classes has

been identified, the parameter estimates obtained from the fitted models can still

be badly biased if data is non-ignorably missing. Two possible corrections for

this problem are to use pattern mixture models (discussed later) or to adjust for

non-response and attrition through the use of probability weights (see following).

Assumption 5: Sampled individuals are independent and self-weighting.

When fitting a GMM, one usually assumes both that the individuals are inde-

pendent and that the observations are self-weighting. Indeed, this assumption

was made in each of the 21 applications I reviewed, primarily because it sim-

plifies model estimation. If the data are independent, then the individual log-

likelihoods can be summed to arrive at the overall log-likelihood for the model.

Additionally, if the sample is self-weighting, then one needn’t worry about incor-

porating probability weights in the analysis to arrive at accurate effect estimates

for the population. Samples that involve unequal probabilities of selection are

not self-weighting. This commonly occurs in complex sample designs that also

feature stratification and/or clustering. For these samples, the sampling prob-

abilities, stratification variables, and clustering typically must be incorporated

6To confirm that this trend was not due simply to the loss of information associated with missing

data, the same patterns of missingness were produced via a completely random process. With the

MAR assumption in tact, the two-class model was preferred in 94% and 91.2% of the replications

given average and extreme amounts of missing data, respectively. Thus, it is nature and not just the

extent of missing data that affects the estimated latent class structure.
7Some studies have found that a sample-size adjustment to the BIC proposed by Sclove (1987)

improves selection of the number of classes for a GMM (Tofighi & Enders, 2007; see also Lubke

& Neale, 2006), whereas others have shown superior performance for the unadjusted BIC (Nylund,

Aparouhov, & Muthén, 2007). In the present simulation, the sample-size adjusted BIC was more

likely to select too many classes than the BIC, and hence only the more conservative results for the

BIC are reported.
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into the analysis to generate accurate estimates for the target population. There

are two main approaches for doing so—a design-based approach and a model-

based approach (see B. O. Muthén & Satorra, 1995, for a contrast of the two

approaches for structural equation models). Both of these approaches can be

implemented with GMMs (L. K. Muthén & Muthén, 2007). For example, with

the model-based approach, one could include random effects to account for

clustering effects and/or incorporate stratification variables and selection vari-

ables as covariates.

None of the GMM applications I reviewed used these strategies. In fact,

only a few of the samples could be described as probability samples at all.

Most were community-based or clinical samples, for which the target popu-

lation was loosely defined and the probabilities of selection unknown. Those

samples that could be described as probability samples, were complex probabil-

ity samples, but in no case were probability weights used in the analysis (nor was

the complex design tested for informativeness to justify omitting the weights;

Asparouhov, 2006). Additionally, several applications involved clustered data

structures (e.g., saturation sampling of students at a particular grade level within

multiple schools), but clustering effects were neither assessed nor modeled.

Little is known about the consequences of ignoring unequal probabilities of

selection and/or clustering effects on latent class estimation in GMMs or, for that

matter, finite mixture models in general. In one of the few papers considering

this issue, Wedel, ter Hofstede, & Steenkamp (1998) showed that if the usual

ML estimator (which assumes a self-weighting, independent sample) is applied

to complex sample data, it can result in the selection of too many classes. Fur-

ther, even if the correct number of classes is selected, the class proportions and

within-class model estimates can be badly biased. As an alternative, they formu-

lated a probability-weighted pseudolikelihood estimator and showed the results

of this estimator to be more accurate. This estimator may also provide one way to

correct for non-ignorably missing data processes, which may be viewed as pro-

ducing unequal probabilities for data to be observed and included in the analysis.

We can thus conclude that, in practice, investigators are routinely fitting

GMMs that assume independent, self-weighted data to complex probability sam-

ples and convenience samples, with the possible consequences that they are es-

timating the wrong number of classes and obtaining incorrect estimates within

classes. When selection probabilities are known, using the pseudolikelihood es-

timator and incorporating stratification variables and clustering effects into the

models should ameliorate these concerns.

Summary of Methodological Concerns

Overall, the portrait that emerges from this review of contemporary GMM appli-

cations suggests that the assumptions of the model are infrequently checked and
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rarely satisfied. This should come as no surprise, as the assumptions of very few

models are met in practice. For instance, the assumptions of the LCM are prob-

ably violated equally often. However, it seems that the GMM is less robust than

the LCM (and many other models). Specifically, an incorrect latent class struc-

ture may result from simple non-normality, misspecification of the covariance

structure, failure to model nonlinear effects, violation of the MAR assumption

for missing data, or insufficient attention to the sampling design. With the no-

table exception of the MAR assumption, the result is typically the estimation

of too many classes. The tendency for too many classes to be estimated when

assumptions of the GMM are violated is disturbing. The classes are imbued with

such importance—thought to reflect distinct etiologies, differential risk, and tar-

gets for intervention—that getting the classes “wrong” is a serious matter.

The methodological challenges identified here are not necessarily intractable,

but addressing them would require massive changes in the way psychology re-

search is done. Data would need to be collected on probability samples with

sufficiently precise measurement to justify the conditional normality assumption.

Even then, there would need to be a strong rationale for why the observations

within classes ought to be normally distributed (perhaps based on prior research

with more homogeneous samples). Alternatively, different assumptions could be

made about the distributions of the repeated measures (e.g., with ordinal or count

data), though this would require equally strong justification. Diagnostics would

need to be conducted to evaluate possible nonlinear relationships, and missing

data would need to be minimized (or, at least, the MAR assumption should be

reasonable). Finally, some way of guarding against or detecting misspecifications

of the within-class mean and covariance structure would be required (e.g., deter-

mining the number of classes first by fitting unrestricted mixture models, then

proceeding to the GMM). The recent development of goodness of fit indexes,

such as the skew and kurtosis tests of B. Muthén (2003), or the component

property method of Hellemann (2006), may also help to differentiate between

models in which the classes are spurious versus those in which the classes are

at least plausibly “real” (though see Bauer & Curran, 2003b, for a somewhat

more skeptical view).

Even if these methodological challenges can be met, however, there are more

fundamental reasons to question the use of GMMs in psychological research, to

which we now turn.

THEORETICAL CONCERNS

Earlier, I noted that when fitting a model, the core assumptions of the model

should be met (within the degree of error permitted by robustness conditions), the

model should be a reasonable approximation to reality, and the results should
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be scientifically meaningful. We have seen that, very often, the first of these

criteria does not hold for GMM applications—the assumptions of the GMM

are typically grossly violated, with the likely consequence of producing a latent

class structure that bears little resemblance to reality. However, as indicated

previously, these assumptions could, in principle, be met or changed. Might the

GMM then offer a reasonable approximation to reality?

The best GMM applications are motivated by strong taxonomic theories and

include construct validation analyses to increase confidence in the obtained tra-

jectory classes (e.g., Odgers et al., 2007). Often, however, there is little theo-

retical justification for the existence of discrete groups. The implicit motivation

seems to be that we cannot expect our populations to be homogeneous and

hence should favor GMMs over LCMs. LCMs do not, however, assume that

change over time is homogeneous in the population. Rather, each individual is

accorded his or her own personal trajectory. Thus, both models allow for het-

erogeneity in change over time, they just make different assumptions about how

this heterogeneity is distributed.

Another theoretical vaguery that is often employed to motivate the application

of GMMs is that the models are “person-centered” as opposed to “variable-

centered” (Connell & Frye, 2006; Muthén & Muthén, 2000; Nagin, 2005, p. 15).

This claim conflates methodology with theory. The person-centered (or person-

oriented) approach to psychological research is deeply rooted in the holistic-

interactionist paradigm articulated by Magnusson & Törestad (1993). The key

idea is that psychological research should study the person as a whole rather

than the cumulative effects of individual variables. Methodologically, this often

translates into using cluster analysis to identify patterns across a set of variables.

The focus is then on these holistic patterns, not the individual variables that went

into the analysis.

The claim that GMMs are person centered seems to stem from the fact that

individuals are clustered. But the clustering is done for an entirely different

reason. In a GMM, latent classes do not represent coherent patterns within an

interactive multivariable system. They are instead subgroups defined by change

in a single variable measured repeatedly through time. Given this, Bergman and

Trost (2006) noted that GMMs can be considered person centered only if this

single variable represents all of the key aspects of the system under study. From

the perspective of the holistic-interactionist paradigm, it is rather hard to imagine

this being possible. Bauer & Shanahan (2007) hence concluded that referring to

GMMs as person centered is misleading. If what is meant by the incorrect use

of this term is that the group trajectories define types of people, then it is worth

repeating that each person has his or her own unique trajectory in the LCM as

well, making it equally “person centered.”

Dispensing with these two pseudotheoretical rationales for fitting GMMs, we

are faced with the more fundamental question of whether theory predicts the
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presence of a latent taxonomy consisting of qualitatively distinct groups, as in

Moffitt (1993), or whether we should instead expect individuals to differ by

gradations. Given that most behaviors, personality traits, and abilities are multi-

determined, involving numerous epigenetic inputs, it seems reasonable to expect

that individual trajectories will most often differ continuously, by degrees, rather

than by types.8 As Maughan (2005) states, “There is : : : widespread recogni-

tion that many of the behaviors we study are dimensionally distributed and do

not show clear-cut points differentiating ‘normality’ and ‘pathology’” (pp. 120–

121). Nagin (2005) agrees, noting that “although there may be populations made

up of groups that are literally distinct, they are not the norm. Most populations

are composed of a collection of individual-level developmental trajectories that

are continuously distributed across population members” (p. 45).

By this reasoning, latent trajectory classes are, in most cases, nothing more

than artificial categories rendered from the true continuum of change. And these

categories can be fickle. Change the start values for the estimator, add covari-

ates, relax or impose a few constraints, collect one more wave of data, or alter

your measurement instrument and wholly new categories may emerge, none

any more or less valid than the original (Eggleston et al., 2004; Hipp & Bauer,

2006; Jackson & Sher, 2005, 2006). In general, we should be wary of models

that are highly sensitive to small changes in the data or model specification.

Further, categorization of continuous variability can make inference difficult, if

not outright hazardous (Bauer & Curran, 2003a). Are the latent classes then still

scientifically useful, as some have argued?

Groups That Do Not Exist

Those who advocate using GMMs even in the absence of taxonic hypotheses

make three points in support of their position. First, GMMs can capture a wide

variety of distributions and hence provide a way to model non-normal random

effects within a growth model (Nagin, 2005; B. Muthén & Asparouhov, in

press; Segawa, Ngwe, Li, Flay, & Aban Aya Coinvestigators, 2005; Vermunt

& van Dijk, 2001). This is undeniably true; however, it is also true that the

estimates obtained from conventional growth models are robust to the presence

of non-normal random effects (Raudenbush & Bryk, 2002, p. 274; Verbeke

& LeSaffre, 1997). To be fair, this robustness does not necessarily extend to

models for discrete outcomes, for which it may be more important to account for

non-normality of the random effects. Even then, however, mixture distributions

are not the only answer. Other approaches for semiparametrically modeling the

8A case can sometimes be made for types even when behaviors are multidetermined, for instance

by arguing that only certain developmental pathways represent coherent patterns of adaptation (or

maladaptation, as the case may be) or that threshold effects trigger developmental bifurcations.
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continuous (but not necessarily normal) distribution of the individual trajectories

exist that do not resolve the population into artificial groups (e.g., Chen, Zhang,

& Davidian, 2002; Zhang & Davidian, 2001).

The danger of artificial groups is the potential for reification by scientists,

policy makers, and practitioners. Statements like, “X% of the population belongs

to group Y” and, “The odds of being in group Y relative to group Z increase

twofold if you have characteristic W,” have little apparent meaning if the groups

are mere figments of the analysis and unstable from one study to the next. As

Raudenbush (2005) observed, “Perhaps we are better off assuming continuously

varied growth a priori and therefore never tempting our audience to believe in

the key misconception that groups of persons actually exist. We would then not

have to warn them strongly against ‘reification’ of the model they have been

painstakingly convinced to adopt” (p. 136).

A second reason sometimes offered for using GMMs in the absence of true

population subgroups is to highlight unusual trajectories that could easily be

overlooked in an aggregated analysis. For instance, by focusing on expectations

in a conventional growth model, one might fail to appreciate more extreme or

infrequent trajectories that could be revealed by a GMM (Collins, 2006; Nagin

& Tremblay, 2005). It is no doubt true that GMMs can be used to help visualize

the variability of individual trajectories, including variability that might not be

predictable on the basis of observed covariates. The picture that results is easy to

interpret, substantively compelling, even “seductive” (Sampson & Laub, 2005).

But a plot of four or five trajectories necessarily represents a gross simplification

of the full variability in the population. Moreover, we need not use a mixture

model to identify unusual trajectories. Any growth analysis should begin with

a graphical assessment of the individual trajectories to identify both typical and

unusual patterns of change, no artificial groups required (Hedeker & Gibbons,

2006, p. 54; Singer & Willett, 2003, pp. 24–35).

Finally, a third argument sometimes offered in favor of GMMs is that accu-

rate inferences can still be drawn from the models even when the groups are

admittedly fictional (Nagin, 2005). The estimates obtained for the groups are

interpreted to reflect regional conditions in the globally continuous distribution

of individual change. Bauer & Shanahan (2007) made much the same interpre-

tation of the mixing components within a latent profile analysis, but they also

remarked that relatively little research has yet been conducted to see how well

the properties of the global distribution are recovered via this local approxima-

tion (see Brame, Nagin, & Wasserman, 2006; and B. Muthén & Asparouhov,

in press, for initial studies in the GMM context). More fundamentally, by re-

solving the population into latent subsets, one runs two risks. First, power is

diminished. This was shown by simulation in Bauer & Curran (2003a) and has

also been seen in real-data comparisons of GMMs relative to standard growth

models (NICHD Early Child Care Research Network, 2004, p. 100). Second,
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within the general GMM, Bauer & Curran (2003a) detected spurious class �

covariate interactions at a relatively high rate. B. Muthén (2004) provides an

explanation of why this may occur: “[A] GGMM that incorrectly divides up

trajectories in, say, low, medium and high classes might find that the covariates

have lower and insignificant influence in the low class due to selection on the

dependent variable” (p. 253). Note that these risks also attend other methods of

categorizing continua (MacCallum, Zhang, Preacher, & Rucker, 2002).

To summarize, although I do not disagree with any of these arguments con-

cerning the potential validity of GMMs even in the absence of a taxonomic

theory, I see the cost-benefit ratio much differently. The potential risks, which

include reification, over-simplification, lost power, and spurious effects, seem to

me to be much greater than the possible benefits. To be clear, I do think there

are some situations in which groups exist, or at least putatively exist, for which

mixture analyses may be appropriate and valuable. More often, however, the

groups appear to serve only as a simplification of continuous variability, leading

to the fundamental question of whether group-based inferences are sensible in

the absence of real groups. In the next section, I describe a possible alternative

way to use GMMs that does not involve this apparent contradiction.

Whole-Population Inference With Growth Mixture Models

In an influential monograph on finite mixture modeling, Titterington, Smith,

and Makov (1985, pp. 2–3) distinguished between two quite different types of

applications. In direct applications, the latent classes are interpreted as repre-

sentative of distinct population subgroups. In contrast, in indirect applications,

the latent classes are used solely to provide a tractable form of analysis for

data that may not obey traditional parametric models. To date, most interest in

GMMs has been centered on direct applications and specifically the evaluation

(or generation) of taxonomic theories of psychosocial development. In contrast,

those who argue for the use of GMMs even when no groups are thought to ex-

ist are promoting indirect applications of the model. We may further subdivide

indirect applications into two types. In the first, the latent class estimates are

presented and interpreted similarly to a direct application, but with the caveat

that the groups are heuristic, not real (Nagin, 2005). The second type of indi-

rect application, with which I am more comfortable, instead places the focus

for interpretation on the overall distribution obtained from the mixture, not the

component distributions of the latent classes.

To clarify these distinctions, let us reconsider the results presented in Fig-

ure 4. Recall that the top panel depicts the true, continuous nonlinear relationship

between the predictor x and the intercepts of the individual growth trajectories

in the population. In contrast, the bottom panel depicts the linear relationship

estimated for each of two latent classes. If the model has been fit as a direct
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application, then the latent classes are spurious, and interpreting them as fun-

damentally different population subgroups would be incorrect and potentially

misleading. One might, however, still justify fitting the model as an indirect

application of the first type. Following the recommendation of Nagin (2005),

we could present the groups as a heuristic device and validly interpret the within-

class effect estimates as reflecting local conditions. That is, within the region of

the distribution characterized by especially low values of x, the effect of x is

steeply negative (Class 1); within the remaining region, x has little or no effect

on the trajectory intercepts (Class 2). This interpretation is perfectly reasonable,

but it continues to place emphasis on the groups rather than the population as a

whole. Because the groups are admittedly artificial, it seems odd to make them

the focus of interpretation. Moreover, the problems noted earlier continue to

arise—there is the potential for reification (e.g., x represents a distinct etiologi-

cal mechanism associated with Class 1 but not Class 2), and the power to detect

the overall effect of x on the trajectory intercepts may be diminished by parsing

the total sample into smaller subgroups.

Given the artificial nature of the groups, it would seem logical to return to

the level of the whole population when making inferences, as in the second

type of indirect application. To do so, we must compute the expected value

of the trajectory intercepts mixed over classes. Bauer (2005) demonstrated one

way that this can be done when the predictor is latent. In this case, however,

the predictor is observed so a simpler approach will suffice. Specifically, the

expected value we require may be computed from the general equation

E.˜i jxi/ D

K
X

kD1

 ik.xi / .’k C �kxi / ; (12)

where  ik.xi / is defined as in Equation 10. As can be seen, the mixed effect es-

timate is a weighted sum of the within-class predicted values, where the weights

are the probabilities of class membership given x. Applying this result to the

example data, we obtain the curve depicted in Figure 5, which can be seen to

reproduce the true population function shown in the top panel of Figure 4 quite

well.

It is worth noting that Figure 5 was produced by fitting the very same model

and using the same parameter estimates that produced the bottom panel of Fig-

ure 4. The depiction in Figure 4, however, requires us to make conditional

inferences—the effect of x is strong in one group and weak in the other—

despite the expressly fictional status of the groups. In contrast, in Figure 5, we

capitalize on the local approximations afforded by the two latent classes to re-

constitute the global relationship between the two variables. Our inferences are

no longer conditional on group membership but rather pertain to the popula-

tion as a whole. We have thus avoided the apparent logical inconsistency of
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FIGURE 5 Approximation of the nonlinear effect in the top panel of Figure 4 via an

indirect application of a growth mixture model (GMM). Two hundred data points shown.

making inferences about groups while at the same time denying their existence.

Other key advantages of focusing on the total population include the preserva-

tion of continuity, diminished temptation for reification, and potentially greater

power.

Given my own research on the topic, I have naturally focused here on non-

linear effect estimation, but there are many other ways that indirect applications

of GMMs could be useful. For instance, another interesting indirect application

is the latent pattern mixture model (LPMM) of Roy (2003) and Lin, McCul-

loch, and Rosenheck (2004). The LPMM represents an extension of the pattern

mixture approach to the analysis of non-ignorably missing data. In a classical

pattern mixture analysis, the sample is first stratified by observed missingness

patterns, then key effects (e.g., time trends, or time by covariate interactions)

are estimated for each pattern and, finally, the estimates are averaged over strata

to obtain the mixed, or aggregate, effect estimates (Hedeker & Gibbons, 1997;

Little, 1995; see also related work by Allison, 1987, and McArdle & Ham-

agami, 1992). The advantage of the pattern mixture model is that it provides

accurate estimates even when data are non-ignorably missing. Unfortunately,
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pattern mixture models become more difficult to implement as the number of

missingness patterns increases (e.g., with long time series and intermittent miss-

ingness). The LPMM offers a solution to this problem by replacing the large

number of observed missingness patterns with a smaller set of latent missing-

ness patterns (Lin et al., 2004; Morgan-Lopez & Fals-Stewart, 2007; Roy, 2003).

The latent missingness patterns are jointly defined by binary missing data in-

dicators for each timepoint as well as the observed repeated measures. Similar

to a standard pattern mixture analysis, the within-class estimates are averaged

across the latent missingness patterns to produce estimates for the aggregate-

level effects.

What both of these example holds in common is the use of latent classes as a

convenient statistical device to better enable inference at the level of the whole

population, avoiding the problematic interpretation of non-existent groups.

CONCLUSION

GMMs are being used in psychology at an increasing rate. The fundamental

question I sought to address here is whether these models are likely to advance

psychological science. My firm conviction is that, if these models continue to

be applied as they have been so far, the answer is clearly no. Most current

applications of GMMs cannot help but find multiple trajectory classes, given

the ubiquity of assumption violations and lack of robustness of the models.

This results in a strong confirmation bias when GMMs are used to evaluate

non-specific taxonic conjectures. In contrast, the evaluation of specific taxonic

hypotheses will often be frustrated by the addition of spurious groups and/or

biased estimates for the trajectory classes. I therefore believe that direct applica-

tions of GMMs should be refrained from unless both the theory and data behind

the analysis are uncommonly strong. Otherwise, the application of GMMs in

psychological research is likely to lead to more blind alleys than ways forward.

An alternative place for GMMs in psychological research is as an approxi-

mating device in indirect applications. Concerns about spurious classes then no

longer apply, given that the classes are expressly acknowledged to be artificial.

When used in this way, a key consideration is whether to continue to interpret

the latent classes, despite the temptation for reification. My own view is that

it is preferable to reintegrate the results prior to interpretation. The idea is to

capitalize on the flexibility of the latent classes to capture features of the data

that ordinary growth models may miss while at the same time avoiding the

problematic interpretation of fictional groups. An interesting question, however,

is whether GMMs will actually be used for this purpose when the idea of “real”

groups seems to be so much more alluring.
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